Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИЛОЖЕНИЕ Д. Преобразование Лапласа





 

Преобразованием Лапласа называется такая математическая операция, в результате которой функции -оригиналу N (t) ставится в соответствие функция F (p), называемая изображением функции N (t) и определяемая следующим образом:

. (Д.1)

Из определения следует, что преобразование Лапласа обладает свойством линейности, т.е.

.

Используя определение (Д.1) и применяя интегрирование по частям, можно показать, что изображение первой производной функции, дифференцируемой в точке t = 0, выглядит как

.

Обратная операция отыскания оригинала по его изображению

называется обратным преобразованием Лапласа. Обратное преобразование Лапласа также линейно.

Для отыскания оригиналов существуют таблицы, найти которые можно в математических справочниках. Приведем здесь краткую выдержку из подобной таблицы.

 

 

 

Указанные свойства преобразования Лапласа и обратного ему преобразования позволяют использовать их для решения систем линейных дифференциальных уравнений с заданными начальными условиями. Рассмотрим решение двух первых уравнений системы, описывающей скорость радиоактивных превращений в простейшей цепочке из двух радионуклидов:

,

, (6.2)

и . Применим преобразование Лапласа к левой и правой частям этих уравнений. В результате, используя свойство линейности, получим следующую систему алгебраических уравнений

,

. (Д.2)

Выразим F 1(р) из первого уравнения системы (Д.2):

.

Подставив этот результат во второе уравнение системы (Д.2), получим

. (Д.3)

Пользуясь свойством линейности обратного преобразования, по таблице находим оригиналы N 1(t) и N 2(t):

,

. (6.3)

Если к первым двум уравнениям системы (6.2) добавить третье, соответствующее следующему превращению в радиоактивной цепочке,

,

, то отыскание его решения полностью аналогично:

.

Подставляя в это уравнение F 2(р) из (Д.3), находим, что

.

Отыскание оригинала по таблице приводит к следующему результату:

Решение более сложных систем (в том числе для разветвленных цепочек) методом преобразования Лапласа также не представляет трудности. Однако, как показывает последний пример, аналитические решения Ni (t) при больших i выглядят весьма громоздко. В этом случае для получения результата предпочтительнее использовать алгоритм Бейтмана, изложенный в п. 6.2.







Дата добавления: 2015-08-12; просмотров: 454. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия