Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие сведения. Многие процессы в природе (в том числе и экономике) протекают во времени





Многие процессы в природе (в том числе и экономике) протекают во времени. Такие процессы называются динамическими и для их описания обычно используются дифференциальные уравнения (или их системы).

Дифференциальными уравнениями называют уравнения вида:

 

y’=F(x,y). (6.27)

 

Если в левой части уравнения находится первая производная от функции, то уравнение называется дифференциальным уравнением первого порядка, если вторая производная, то – второго порядка и т.д.

С точки зрения решения все дифференциальные уравнения можно разделить на две группы. К первой группе относятся такие уравнения, для которых можно получить аналитическое решение, т.е. уравнение вида:

 

y = f(x). (6.28)

 

Методы решения дифференциальных уравнений описаны в соответствующей литературе. Если исследователю повезло и дифференциальное уравнение решаемо, то работать с объектом можно, используя формулу (6.28).

К сожалению, подавляющая часть встречающихся на практике уравнений не имеют аналитического решения, и для их решения приходится использовать численные методы.

В этом случае решение сводится к получению зависимости (6.28) в виде таблицы пар значений x - y.

В общем случае дифференциальное уравнение может иметь множество решений. Для нахождения единственного решения используются дополнительные условия.

На практике чаще всего встречается так называемая задача Коши. В ней условие единственности решение определяется значением функции в начальной точке:

 

y(x0)=y0 (6.29)

 

Основным недостатком численных методов является необходимость выбора шага интегрирования. Если он подобран неудачно, то получающееся решение чаще всего не имеет ничего общего с реальным решением. Кроме того, при программировании этих методов дополнительной проблемой является неустойчивость решения. Это обычно выражается в том, что программа либо аварийно завершается ввиду переполнения, либо работает неприемлемо долго.







Дата добавления: 2015-08-12; просмотров: 436. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия