Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Правило фаз Гиббса. Условия термодинамического равновесия однофазной и многофазных систем





В качестве примера применения термодинамических методов исследования получим условия термодинамического равновесия однофазной изолированной системы.

Разобьем мысленно систему на две подсистемы (') и (") (рис.5.1), для каждой из которых известны все термодинамические параметры, причем .

Для каждой из подсистем, находящихся в состоянии равновесия, запишем уравнения Гиббса:

Просуммируем почленно эти два выражения:

С другой стороны, для изолированной равновесной системы тогда

и

Ввиду произвольности значений дифференциалов , из последнего выражения находим условия термодинамического равновесия изолированной системы:

Рассмотрим однокомпонентную систему, состоящую из двух взаимодействующих фаз и заключенную в изолирующую оболочку. Пусть каждая из фаз находится в своем внутреннем равновесии, т.е. характеризуется своим набором интенсивных и экстенсивных параметров. При малом изменении состояния каждой из фаз можно записать для них термодинамические тождества

.


В силу аддитивности , замкнутости системы и обратимости процесса имеем

и после почленного суммирования равенств получим

В силу произвольности дифференциалов множители в скобках при этих дифференциалах должны быть равны нулю, откуда получаем условия термодинамического равновесия двухфазной однокомпонентной системы:

Химический потенциал по определению сам является функцией "естественной" пары переменных , таким образом, условие равновесия фаз может быть записано в виде

Вид функций от T и p в общем случае различен для каждой из фаз, поэтому последнее условие не является тождеством. Это есть алгебраическое уравнение, связывающее температуру и давление в равновесной двухфазной системе. Таким образом, в двухфазной однокомпонентной системе температура и давление однозначно связаны. Объем же системы может принимать произвольное значение в зависимости от соотношения между массами фаз.

Состояние равновесия двухфазной системы называется состоянием насыщения, а равные для фаз температура и давление – параметрами насыщения. (s aturation ≡ насыщение).

5.4.4. Уравнение Клапейрона – Клаузиса

В дальнейшем будем рассматривать только фазовые переходы I рода, во время которых происходит изменение агрегатного состояния, а точнее, переход "жидкость–пар", который весьма часто имеет место в тепловых машинах.

Формула Клапейрона–Клаузиуса связывает температуру насыщения (температуру кипения) T s с давлением насыщения p s. Для нахождения этой зависимости запишем в дифференциальной форме условие равновесия фаз:

или

Так как химический потенциал совпадает с удельной свободной энергией Гиббса , то

откуда

Учтя определение удельной теплоты парообразования, получаем зависимость, известную как формула Клапейрона - Клаузиуса

Так как , а удельный объем в парообразном состоянии больше, чем в жидком, температура кипения увеличивается с увеличением давления.


Лекция 11







Дата добавления: 2015-08-12; просмотров: 872. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия