Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

А) последовательное; б) параллельное включение;





То обстоятельство, что система сохраняет статическую устойчивость в уста­новившемся режиме работы, еще не позволяет утверждать, что она окажется устойчивой и при резких внезапных нарушениях режима ее работы, подоб­ных короткому замыканию (к.з.), отключению генераторов или линий и т.д. Эта сторона проблемы должна быть исследована самостоятельно и затра­гивает круг вопросов, относящихся к так называемой «динамической устой­чивости» электрических систем.

Если в исследовании статической устойчивости приходится иметь дело с малыми возмущениями рабочего режима работы системы (перерастающими в выпадение из синхронизма при неустойчивости системы), то предметом исследования динамической устойчивости являются значительные возмущения, причем существенное значение приобретают самый характер и размеры возмущения.

Для выяснения принципиальных положений динамической устойчивости рассмотрим явления, возникающие при внезапном отключении одной из двух параллельных цепей линии электропередачи (рисунок 11.3), связывающей удаленную станцию с шинами неизменного напряжения. Схема замещения электропередачи в нормальном режиме (до отключения цепи) представлена на рисунок 11.4,а. Индуктивное сопротивление системы, равное , определяет амплитуду характеристики мощности в этих усло­виях:

Рисунок 11.3 – Принципиальная схема электропередачи при отключении цепи
Рисунок 11.4 - Схема замещения электропередачи при нормальном режиме (а) и при отклю­чении цепи (б).

 

Опуская влияние переходных электромагнитных процессов в генераторах, можно установить, что при отключении одной из цепей линии электро­передачи индуктивное сопротивление системы получает новое значение (рисунок 11.4,б): - большее, чем в нормальном режиме, поскольку индуктивное сопротивление линии при отключении цепи возрастает с 0,5 до . Амплитуда характеристики мощности при отключенной цепи соответственно уменьшается до . Характеристики мощности в условиях нормального режима и при отключенной цепи показаны на рисунке 11.5. Если режим работы, предшествовавший отключению цепи, определялся точкой а на характеристике мощности () нормального режима при передаваемой мощности и угле , то после отключения этому режиму должна соот­ветствовать новая характеристика мощности (), причем нетрудно устано­вить, какая именно точка этой характеристики будет определять режим в момент отключения цепи. Этой точкой является точка b при том же зна­чении угла , что и в нормальном режиме. Угол сохраняет свое зна­чение в момент отключения, поскольку вектор э. д. с. генератора Eможет перемещаться относительно вектора напряжения приемной системы Uтолько при изменениях частоты вращения ротора генератора. Последняя же не может претерпевать скачкообразных изменений в силу существования механической инерции у ротора генератора.

В момент отключения цепи режим работы изменяется и характеризуется не точкой а, а точкой b на новой характеристике, что обусловливает внезапное уменьшение мощности генератора. Мощность турбины остается при этом неизменной и равной , так как регуляторы турбин реагируют на изменение частоты вращения агрегата, которая в мо­мент отключения цепи сохраняет свое нормальное значение, как это только что было отмечено.

В дальнейшем скорость машины будет изменяться, однако и в этой стадии процесса можно в первом приближении считать, что регуляторы не успевают сколько-нибудь заметно повлиять на мощность, развиваемую турбиной. Неравенство мощностей, а следовательно, и моментов на валу турбины и генератора вызывает появление избыточного момента, под влиянием которого агрегат турбина-генератор начинает ускоряться. Связанный с рото­ром генератора вектор э. д. с. E начинает вращаться быстрее, чем вращаю­щийся с неизменной синхронной угловой скоростью вектор напряжения шин приемной системы U. Изменения скорости v перемещения вектора э. д. с. генератора E относительно напряжения шин приемной системы U, представ­ляющей разность угловых скоростей вращения векторов E и U, показаны на рисунке 11.5.

Возникновение относительной скорости вращения v приводит к увеличе­нию угла , и на характеристике мощности генератора при отклю­ченной цепи рабочая точка перемещается из точки b по направлению к точке с. При этом мощность генератора начинает возрастать. Однако вплоть до точки с мощность турбины все еще превышает мощность генератора и избыточный момент, хотя и уменьшается, но сохраняет свой знак, благодаря чему относительная скорость вращения непрерывно возрас­тает. В точке с мощности турбины и генератора вновь уравновешивают друг друга и избыточный момент равен нулю. Однако процесс не оста­навливается в этой точке, так как относительная скорость вращения ротора достигает здесь наибольшего значения и ротор проходит точку с по инерции.

При дальнейшем росте угла мощность генератора уже превышает мощность турбины и избыточный момент изменяет свой знак.Он начинает тормозить агрегат. Относительная скорость вращения теперь уменьшается и в некоторой точке d становится равной нулю. Это означает, что в точке d вектор э. д. с. Е вращается с той же угловой скоростью, что и вектор напряжения U, и, следовательно, угол между ними больше не возрастает. Угол в этой точке достигает своего максимального значения . Однако и теперь процесс не останавливается, так как вследствие неравенства мощ­ностей турбины и генератора на валу агрегата существует избыточный момент тормозящего характера, под влиянием которого частота вращения продолжает уменьшаться и относительная скорость становится отрица­тельной. Угол начинает уменьшаться, и рабочая точка, характеризующая процесс на характеристике мощности, перемещается в обратном направлении к точке с. Эту точку ротор вновь проходит по инерции, и около точки b угол достигает своего нового минимального значения, после чего вновь начинает возрастать. После ряда постепенно затухающих колебаний в точке с устанавливается новый установившийся режим с прежним значением пере­даваемой мощности и новым значением угла . Картина колебаний угла во времени показана на рисунке 11.6. Постепенное уменьшение ампли­туды обусловливается потерями энергии при колебаниях частоты вращения генератора.

Такой характер перехода к новому режиму не влечет за собой каких-либо осложнений. Во всяком случае в нарисованной картине нарушение устойчи­вости не имело места. Можно отметить лишь, что в переходном электро­механическом процессе угол достигал значений (), превышающих значе­ние нового установившегося режима.

Возможен и другой исход процесса (рисунок 11.7). Торможение ротора, начиная с точки с, уменьшает относительную скорость вращения . Однако угол в этой фазе процесса все еще возрастает, и если он успеет достигнуть критической величины в точке с на пересечении падающей ветви сину­соиды мощности генератора с горизонталью мощности турбины прежде, чем относительная скорость упадет до нуля, в дальнейшем избыточный момент на валу машины становится вновь ускоряющим, скорость начнет быстро возрастать и генератор выпадает из синхронизма (рисунок 11.8).

 

Рисунок 11.5 - Колебания мощности и относительной угловой скорости генератора при от­ключении цепи. I —характеристика мощности при нормальном режиме; II —характеристика мощности при отключении цепи,
  Рисунок 11.6. Колебания угла при отключении одной параллельной цепи электропередачи.  
Рисунок 11.7. Нарушение динамической устойчивости при отключении одной параллельной цепи электропередачи  
Рисунок 11.8. Нарастание угла при нарушении устойчивости  

 

Если в процессе качаний будет пройдена точка с', то возврат к установившемуся режиму уже невозможен. Несмотря на теоретическую возмож­ность существования нового установившегося (и статически устойчивого) режима в точке с, процесс качания машины при переходе к этому режиму может привести к выпадению машины из синхронизма. Такой характер нарушения устойчивости может быть назван динамическим.

Основной причиной нарушений динамической устойчивости электрических систем являются обычно короткие замыкания, резко уменьшающие ампли­туду характеристики мощности.

 

Рекомендуемая литература: ОЛ3, ДЛ1

 

Контрольные вопросы

 

1. Что называется динамической устойчивостью?

2. Что называется пропускной способностью?

3. Что представляет собой динамические характеристики?

4. Какие допущения принимается при анализе устойчивости?

5. Что понимается под динамической устойчивостью электрической сис­темы?

6. Как влияют величины постоянных инерции генераторов на динамиче­скую устойчивость энергосистем?

7. Каким образом, не прибегая к расчету площадей ускорения и торможе­ния, можно выявить нарушение динамической устойчивости сис­темы?

 







Дата добавления: 2015-08-12; просмотров: 1140. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия