Студопедия — Молока ТОМ-2А (силове коло)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Молока ТОМ-2А (силове коло)






 

У положенні перемикача SA “Ручний” керування електро­приводами здійснюється тумблерами S1, S2, S3, S4 у колах відповідних магнітних пускачів. Вмиканням тумблера S1 у ручному режимі здійснюється початкове наморожування льоду на панелях випарника.

У положенні перемикача SA “Автоматичний” керування техно­логічним циклом реалізується за допомогою блока логічного керу­вання Е залежно від стану контакту датчика температури SK2. Блок Е призначений для вироблення тимчасових сигналів необхідної трива­лості, забезпечення технологічного алгоритму та організації вихідних сигналів у вигляді “сухих” контактів герконових реле К2 і КЗ. Як датчик температури використовується термоконтакт SK2, контакт якого замкнений ртутним стовпчиком при температурі + 4 0С та вище. Логічний сигнал про необхідність вмикання системи охолодження, надходячи до блока Е, викликає спрацювання вихідних реле К2 і К3. Замикаючий контакт реле К2, який увімкнено в коло котушки магніт­ного пускача КМ1, забезпечує роботу мішалки, а контакт К3 вмикає пускач КМ2 і подає команду на ввімкнення насоса охолодження.

Рис. 2.5.9. Принципова електрична схема танка-охолодника молока ТОМ-2

 

Надалі алгоритм керування передбачає таке функціонування схеми керування:

· за умов досягнення в процесі охолодження молока темпера­тури, нижчої за + 4 С, контакт SК2 розмикається, вихідне реле К3 вимикається і відповідно розмикає свій контакт у колі котушки пускача КМ2, що викликає вимикання насоса охолодження;

· мішалка після вимикання системи охолодження працюватиме, а після закінчення часу 3 ± 1 хв блок Е виробить команду вимикання вихідного реле К2, контакт якого вимкне пускач мішалки КМ1;

· у процесі зберігання охолодженого молока блок Е вмикає мішалку на 3 хв через кожні 30 хв;

· через зменшення кількості льоду на панелях випарника, який витрачається на охолодження молока, температура вихідних парів фреону з випарника підвищується, контакти температурного реле SK1 у колі магнітного пускача КМЗ замикаються і вмикається привод компресора і вентилятора;

· для контролю системи мащення компресора передбачене реле РКС. При кожному запуску компресора контакт реле РКС повинен замкнутися протягом 20 с, що контролюється елементом ДА9 (J-312), який у разі успішного функціонування системи замикання контакту РКС не дозволить вимкнутися проміжному реле К1. У випадку, коли контакт РКС за 20 с від початку запуску компресора не замкнеться, електро­магнітне реле в елементі ДА9 знеструмиться, контакт його розімкнеться вимикаючим реле К1, замикаючі контакти К1, розми­каючись вимкнуть ланцюг живлення, що забезпечить аварійне вимкнення устаткування ТОМ-2А;

· за умов неприпустимого підвищення тиску, який контролю­ється датчиком реле тиску SP, та спрацюванні теплових реле КК1-КК4 при можливих перевантаженнях електродвигунів M1-М5 їх розми­каючі контакти знеструмлюють коло живлення реле К1 і відбувається аварійне вимкнення устаткування ТОМ-2А, загоряється сигнальна лампа HL2 “Аварія”. Деблокування сигналу “Аварія” відбувається шляхом вимикання ввідного автоматичного вимикача QF та його повторного вмикання;

· за умов неприпустимого підвищення тиску, який контролю­ється датчиком реле тиску SP, та спрацюванні теплових реле КК1-КК4 при можливих перевантаженнях електродвигунів M1-М5 їх розми­каючі контакти знеструмлюють коло живлення реле К1 і відбувається аварійне вимкнення устаткування ТОМ-2А, загоряється сигнальна лам­па HL2 “Аварія”. Деблокування сигналу “Аварія” відбувається шляхом вимикання ввідного автоматичного вимикача QF та його повторного вмикання;

· технологічна операція “Миття” здійснюється у відповідному положенні перемикача SA. У цьому режимі передбачається керування електроприводом насоса мийки та електроприводом мішалки. Вмикання мішалки та насоса здійснюється за допомогою тумблера S4;

· за умов підвищення температури молока контакти SK2 замикаються і робота схеми повторюється.

Захист електроприводів та електроустаткування ящика керу­вання від струмів короткого замикання забезпечується автоматичними вимикачами.

Питання для самоконтролю

 

1. Яка необхідність первинної обробки молока?

2. Технологія первинної обробки молока при використанні пастеризаційної установки ОПФ-1?

3. Принципи автоматизації пастеризаційної установки ОПФ-1.

4.З якого обладнання складається танк-охолодник молока ТОМ-2А?

5. Як технологічно працює танк-охолодник молока ТОМ-2А?

6. Які автоматизовані операції виконуються танком-охолодни­ком молока ТОМ-2А?

ТЕСТИ

 

1. Які операції відносять до первинної обробки молока?

A. Первинна обробка полягає в очищенні молока від сторонніх домішок, його пастеризації та охолодженні.

B. Первинна обробка полягає у відцентровій очистці молока від сторонніх домішок.

C. Первинна обробка полягає у охолодженні і зберіганні молока на фермі.

2. Для чого призначена пастеризаційна установка ОПФ-1?

A. Для відцентрової очистки і охолодження молока у закритому потоці.

B. Для відцентрової очистки, пастеризації, витримування і охолодження молока у закритому потоці.

C. Для збирання, охолодження і зберігання молока на фермі.

3. Які засоби автоматизації використовуються в пастери­за­торі молока ОПФ-1?

A. Два регулятори температури пастиризації молока та лого­метрична установка контролю температури охолодженого молока.

B. Електроклапан подачі пари та перепускний клапан молока.

C. Поплавковий датчик рівня молока в урівнювальному бакові, регулятори температури пастиризації молока.


4. Використовуючи принципову електричну схему ОПФ-1, вкажіть, чим керує регулятор температури А1?

A. Контролює температуру молока в секції пастиризації та через перепускний клапан відправляє молоко на допастеризацію при його пониженій температурі.

B. Контролює температуру молока в секції пастиризації та через електрогідравлічний клапан керує подачею пари.

C. Регулює тепературу охолодження молока, керуючи потоком холодної води.

5. Використовуючи принципову електричну схему ТОМ-2, вкажіть, за допомогою чого здійснюється автоматичне керування технологічним циклом?

A. За допомогою блока логічного керування Е залежно від стану контакту датчика температури SK2.

B. За допомогою блока логічного керування Е.

C. За допомогою контакту датчика температури SK2.

6. Використовуючи принципову електричну схему ТОМ-2, вкажіть, при якій температурі термоконтакт SK2 замкнений?

A. При температурі + 0 0С та вище.

B. При температурі + 4 0С та вище.

C. При температурі + 8 0С та вище.

7. Використовуючи принципову електричну схему ТОМ-2, вкажіть, якими пристроями здійснюється керування мішалки в про­цесі зберігання молока?

A. Програмним пристроєм, який вмикає мішалку на 10 хв через кожні 30 хв.

B. Програмним реле часу, який вмикає мішалку на 3 хв через кожні 60 хв.

C. Блоком Е, який вмикає мішалку на 3 хв через кожні 30 хв.

8. За допомогою принципової електричної схеми ТОМ-2 вкажіть, для чого використовується реле SР1?

A. Для контролю системи мащення компресора.

B. Для контролю тиску фреону.

C. Для контролю молока.


9. За допомогою принципової електричної схеми ТОМ-2 вка­жіть, коли відбувається аварійне вимикання установки?

A. При підвищенні тиску, який контролюється датчиком реле тиску SP.

B. При спрацюванні теплових реле КК1-КК4 при можливих перевантаженнях електродвигунів M1-М5.

C. При підвищенні тиску, який контролюється датчиком реле тиску SP, та спрацюванні теплових реле КК1-КК4 при можливих перевантаженнях електродвигунів M1-М5.

2.6. АВТОМАТИЗАЦІЯ УСТАНОВОК ЕЛЕКТРИЧНОГО ОСВІТЛЕННЯ ТА ОПРОМІНЕННЯ

2.6.1. Автоматизація установок електричного освітлення

Керування виробничим освітленням повинне забезпечити необхідний світловий режим і сприяти економії електроенергії. Найбільш поширені такі способи керування виробничим освітленням: місцеве індивідуальне, місцеве централізоване, автоматичне у функції освітленості, автоматичне централізоване за заданою програмою.

Місцеве індивідуальне керування застосовують у підсобних, комунально-побутових та інших невеликих за розмірами приміщеннях. Місцеве централізоване керування (з одного місця керують багатьма світильниками) застосовують у корівниках, свинарниках, майстернях тощо. У коридорах з двома входами застосовують си­стему місцевого керування з двох місць за допомогою перемикачів. Ця система забезпечує керування освітленням з кожного місця незалежно від положення перемикача в іншому місці.

Автоматичне керування освітленням у функції освітленості найбільш характерне для управління зовнішнім освітленням за допо­могою фотореле. Принципова електрична схема керування освітлен­ням у функції освітленості з використанням фотореле зображена на рисунку 2.6.1. В автоматичному режимі вона працює так. При недостатній природній освітленості опір фоторезистора R3 великий і струм бази транзистора VT2 малий. Обидва транзистори будуть закритими. Про­міжне реле К одержить живлення через коло, в яке ввімкнені резистор R1, діод VD і резистори R2, R4. Реле К замкне свій кон­такт у колі живлення ко­тушки електромагнітного пускача KM. Пускач KM спрацює і ввімкне освітлення. Коли природне освітлення досягне заданого рівня, опір фоторезистора зменшиться, зросте струм емітера транзистора VT2, а отже, зросте потенціал на базі транзистора VT1. Транзистор VT1 відкриється і зашунтує котушку проміжного реле К. Контакт проміжного реле К в колі живлення котушки електромагнітного пускача розімкнеться, що приведе до вимикання освітлення. В схемі передбачено ручне керу­вання за допомогою перемикача SA (положення “Ручне керування”).

 

 

Рис. 2.6.1. Принципова електрична схема керування

освітленням у функції освітленості

 

Дія освітлення на живі організми різноманітна і, насамперед, визначається інтенсивністю, періодичністю і спектром. Але прийнято вважати, що найбільшу дію на біологічні процеси життєдіяльності організму тварин і птиці має періодичність, тобто зміна тривалості світлого періоду доби і частота зміни темного та світлого періодів.

Найбільш чутливими до цього фактора є птахи, де зміна періодичності дії видимого опромінення дозволяє керувати яйценосністю і підвищувати продуктивність м’ясного напрямку виробництва.

Сучасна наука рекомендує чітко слідкувати за тривалістю світло­го періоду доби та імітувати світанок і сутінки. Автоматичне керування режимами роботи освітлення забезпечує чітке дотримання вказаних вимог.

У пташниках з природним та штучним освітленням доступ природного світла обмежений. Освітленість у більшості випадків не перевищує 1% від зовнішньої і різко зменшується до центра приміщення. Разом з тим у світлий час доби на площадках, що примикають до стін з вікнами, рівень природної освітленості може бути цілком достатнім. У подібних приміщеннях повинна бути передбачена можливість відключення рядів світильників, найближчих до світлових прорізів. Керування освітленням у даних випадках може здійснюватися автоматично з використанням фотореле.

В пташниках без вікон необхідне чітке дотримання світлового режиму з забезпеченням необхідної періодичності та тривалості світлого періоду, рівня освітленості, імітації “світанку” і “сутінок”.

Для автоматичного керування освітленням у закритих пташниках для забезпечення необхідної періодичності і зміни тривалості світлового дня використовують різноманітні програмні пристрої, наприклад “УПУС”, “ПРУС”. Принцип дії даних пристроїв побудований на основі годинникового механізму з підзаводом від мікродвигуна.

Пристрій “ПРУС-1” має барабан з вирізом (рис. 2.6.2.), профіль якого визначає програму роботи освітлювальної установки на весь період вирощування курчат (150 днів) або утримання курок-несучок (400 днів). Барабан приводиться в дію годинниковим механізмом і автоматичним підзаведенням пру­жини від електродвигуна.

 

а б

Рис. 2.6.2. Прилад програмного керування освітленням ПРУС-1:

а – будова; б – принципова електрична схема; 1 – годинниковий механізм

з мікродвигуном; 2 – програмний барабан; 3 – рукоятка гвинта; 4 – гвинт;

5 – мікроперемикачі; 6 – гайка з плитою; 7 – шестірні; 8 – корпус;

9 – важіль для встановлення незмінної програми;

10 – добова шкала

 

 

Освітлювальні лампи поділяють на дві групи, які вмикаються електромагнітними пускачами КМ1 і КМ2. Коли спеціальний пристрій, що діє на мікроперемикачі 5, ковзає по поверхні барабана, то контакти останніх замкнені і освітлення ввімкнене. Якщо пристрій знаходиться над вирізом, то контакти мікроперемикачів розімкнуться і почергово з витримкою часу 2...5 хв вимкнеться освітлення. Вмикаються контакти мікроперемикачами у зворотній послідовності, що забезпечує створення штучних “світанку” та “сутінок”.

Рис. 2.6.3. Принципова електрична схема пристрою “ТИРОС-1”

 

Для плавного регулювання інтенсивності електроосвітлення з метою імітації “світанку” та “сутінок” застосовують тиристорні регулятори напруги. Принципова електрична схема автоматичного пристрою “ТИРОС-1” зображена на рисунку 2.6.3. Напруга на освітлювальні прилади надходить з мережі через блок 1, у якому відбувається його комутація тиристорами VS1 і VS2. Блок 2 забезпечує живлення ланцюгів керування і сигналізації HL1, HL2 і HL3, що показує наявність напруги і положення перемикачів SA2 і SA3. Блок 3 створює витримки часу зниження інтенсивності освітлення, що задаються резисторами R4, R5 і перемикачами SA2 і SA3, встанов­леними в блоці 3. Пристрій “ТИРОС-1” застосовується на додаток до пристроїв автоматичного керування тривалістю світлового дня.

Сучасні пристрої автоматичного керування освітленням у пташниках поєднують в собі мікропроцесорні програматори періодичності та тривалості світлового режиму, тиристорні регулятори освітленості з функцією “світанок – сутінки” та вбудовану систему захисту освітлювальної установки.

Питання для самоконтроля

 

1. Що дає автоматичне керування освітлювальними установ­ками?

2. За допомогою чого передбачають автоматичне керування освітленням територій сільськогосподарських підприємств у нічний час?

3. Які особливості керування освітленням у пташниках?

4. Для чого призначений програмний пристрій “ПРУС –1”?

5. Функціональні можливості пристрою керування “ТИРОС”?

ТЕСТИ

1. Для чого передбачають імітацію “світанку” та “сутінок” при управлінні освітленням у пташниках?

A. Для створення рівномірного рівня освітленості в зоні розміщення птахів.

B. Для зменшення травмування птахів при різких змінах освітленості.

C. Для збільшення яйценосності птахів.

2. Імітація “світанку” та “сутінок”, при управлінні освіт­лен­ням у пташниках з використанням пристрою"ПРУС–1" вико­ну­ється.

A. Двоступінчатим керуванням груп світильників.

B. Тритупінчатим керуванням груп світильників.

C. Плавним регулюванням напруги живлення світильників

3. Використовуючи принципову електричну схему програм­ного пристрою “ПРУС–1”, вкажіть, за допомогою якого пристрою здійснюється вмикання освітлення в ручному режимі?

A. За допомогою контактів проміжного реле К1 і К2.

B. За допомогою перемикача SА.

C. За допомогою контактів проміжного реле К1 і К2 та перемикача SА.

4. Використовуючи принципову електричну схему про­грамного пристрою “ПРУС–1” вкажіть як здійснюється вмикання освітлення в автоматичному режимі?

A. Програмний пристрій замикає контакти мікроперемикачів SQ1 та SQ2 в колі котушок проміжних реле К1 і К2, які своїми контактами подають напругу на магнітні пускачі КМ1 та КМ2 груп освітлення.

B. Програмний пристрій замикає контакти мікроперемикачів SQ1 та SQ2 в колі котушок магнітних пускачів КМ1 та КМ2 груп освітлення.

C. За допомогою контактів проміжного реле К1 і К2 та перемикача SА.

5. Використовуючи принципову електричну схему пристрою “ТИРОС”, вкажіть, за допомогою якого засобу здійснюється безпосереднє регулювання напруги на світильниках?

A. За допомогою резисторів R4, R5.

B. За допомогою перемикачів SА2, SА2.

C. За допомогою тиристорів VS1, VS2.

2.6.2. Автоматизація установок ультрафіолетового опромінення

При промисловій технології вирощування тварин і птахів значне місце відводиться використанню ультрафіолетового опромі­нення. Ультрафіолетове опромінення з довжиною хвилі 280..315 нм (в області – В) в малих дозах позитивно впливає на ріст, розвиток, обмін речовин, продуктивність тварин і птахів. Недостача природного ультрафіолетового опромінення особливо відчутна в осінньо-зимовий період і ранньою весною. Вона часто буває першопричиною порушення обміну речовин, зниження захисних функцій організму і його стійкості до різних захворювань. Під дією цих променів у шкірі тварин відбувається реакція утворення з провітаміну активно діючого вітаміну D, який відіграє важливу роль у регулюванні обміну речовин. При недостачі в організмі вітаміну D розвиваються такі хвороби, як рахіт, ацидоз та інші. Щоб цього не допустити, в системах зоотехнічних і ветеринарних заходів передбачається штучна компенсація ультрафіолетової недостачі, в результаті чого на 5…13% підвищуються надої корів, збільшуються на 4…20% середньодобові прирости маси поросят, телят, ягнят і птахів, на 10…15% збільшується яйценосність курей.

Для ультрафіолетового опромінення сільськогосподарських тва­рин і птахів використовують різні типи опромінювачів і установок: стаціонарні опромінювачі типів ЭО1-30М, ОЭ-1, ОЭ-2, і ОЭСП02- 2 ´ 40, переносні опромінювачі типів ОРК-2 і ОРКШ, пересувні опромінювальні установки типів УО-4 і УОК-1 та інші.

Основним критерієм ефективності ультрафіолетового опромі­нення є необхідна кількість опромінення – доза. Вона для кожного виду і віку тварин та птахів визначається на основі біологічних досліджень. Доза опромінення залежить від типу та потужності джерела опромінення, висоти підвісу опромінювача та тривалості процесу опромінення. Структурна схема керування процесом ультрафіолетового опромінення тварин і птахів зображена на рисунку 2.6.4.

Рис. 2.6.4. Структурна схема керування процесом ультрафіолетового опромінення: H – доза опромінення (вхідна дія); t – час опромінення (величина, що керується)

 

З точки зору автоматизації для стаціонарних і переносних опромінювальних установок тривалість опромінення може бути забезпечена шляхом використання програмних пристроїв. Вони забезпечуватимуть необхідну періодичність включення та тривалість роботи опромінювальної установки протягом доби. При використанні пересувних опромінювальних установок тривалість опромінення обумовлена швидкістю переміщення опромінювачів та кількістю проходів, що вони здійснюють. Отже, при керуванні ними використо­вують принцип управління кількістю проходів, з використанням програмних пристроїв та апаратів керування у функції шляху.

 

Рис. 2.6.5. Будова опромінювача ЭО-1-30М:

1 – кожух; 2 – розсіювач; 3 – лампа ЛЭ-30;

4 – лампа розжарювання; 5 – трансформатор

Рис. 2.6.6. Принципова електрична схема опромінювача ЭО-1-30М

 

Стаціонарний опромінювач типу ЭО-1-30М (рис. 2.6.5) призна­чений для ультрафіолетового опромінення тварин і птахів. В опро­мінювач входить одна ерітемна лампа типу ЛЭ-30 потужністю 30 Вт та одна лампа розжарювання потужністю 40 Вт і напругою живлення 127 В. Лампа розжарювання використовується в якості баластного опору. Опромінювач складається з кожуха 1, розсіювача 2, що виготовлені з оцинкованої та пофарбованої листової сталі. Всі прилади та арматура розміщені в кожусі. В опромінювач також входить одна ерітемна лампа 3 типу ЛЭ-30 потужністю 30 Вт та одна лампа розжарювання 4 потужністю 40Вт і напругою живлення 127В. Лампа розжарювання використовується в якості баластного опору та як освітлювальний прилад. Для захисту ламп від пошкоджень використо­вується захисна сітка. Ефективне запалювання ерітемної лампи здійснюється за допомогою трансформатора Т та полоси з алюмінієвої фольги на поверхні лампи (рис. 2.6.6).

При управлінні ультрафіолетовим опроміненням з використан­ням опромінювачів ЭО-1-30М їх поєднують в групи та передбачають програмне керування періодичністю і тривалістю процесу опромі­нення.

Самохідна установка УОК-1 (рис. 2.6.7, а) з двома лампами типу ДРТ-400 приводиться в дію від електродвигуна і застосовується для опромінення курей в багатоярусних клітках. Необхідна доза опромінення при використанні самохідної установки забезпечується кількістю проходів. Принципова електрична схема установки УОК-1 зображена на рисунку 2.6.7, б. Пересуваючись між клітковими батареями, установка опромінює птицю у клітках відразу з двох боків проходу. Апарати керування роботою електродвигуна і опромінювачів змонтовані на пересувному шасі. Керування роботою електродвигуна здійснюється за допомогою реверсивного електромагнітного пускача КМ1, кнопок SB1, SB2 і SB3 та кінцевих вимикачів SQ1 і SQ2. В передній частині шасі встановлено кінцевий вимикач SQ2, який переключає електродвигун на зворотний хід, а в задній частині – кінцеві вимикачі SQ1 та SQ3 відповідно для вимикання ламп і зупинки шасі в кінці робочого ходу установки. Пуск електродвигуна здійснюють кнопками SB3 (прямий хід) або SB4 (зворотний хід). Лампи запалюють повторно-короткочасним натисканням на кнопку SB1.

Електромеханізована підвісна опромінювальна установка УО-4 призначена для ультрафіолетового опромінення тварин і птахів при утриманні їх на підлозі. Схема розміщення опромінювальної установки показана на рисунку 2.6.8, а будова – на рисунку 2.6.9. Установка складається з чотирьох опромінювачів, що комплектуються лампами ДРТ-400, щита керування, приводної станції з електродвигу­ном і редуктором, несучої конструкції. Несучу конструкцію вико­нують зі стальної оцинкованої проволоки, яку закріплюють вздовж приміщення.

 

б

Рис. 2.6.7. Самохідна установка УОК-1:

а – будова; б – принципова електрична схемаю:1 – самохідне шасі;

2 – привод від електродвигуна до ведучих коліс і пристрій для укладання кабелю; 3 – опромінювачі з лампами ДРТ-400; 4 – штанга; 5 – панель керування; 6 – кінцеві вимикачі

 

Під час роботи опромінювачі здійснюють зворотно-поступаль­ний рух за допомогою троса, що приводиться в рух від електродвигуна 0,27 кВт. Довжина несучого дроту і троса розрахована на приміщення довжиною до 90 м. Швидкість переміщення опромінювачів становить 0,3 м/хв. Необхідна доза опромінення забезпечується кількістю проходів і висотою підвісу опромінювачів.

Рис. 2.6.8. Схема розміщення установки УФ опромінення УО-4:

1 – ролик натяжний; 2 – гак; 3 – несучий провід; 4 – трос сталевий;

5 – розподільник; 6 – поводок з хомутами; 7 – опромінювач;

8 – шафа керування; 9 – привідна станція

Рис. 2.6.9. Опромінювальна установка УО-4:

1 – троси; 2 – каретка; 3 – несуча проволока; 4 – кабель; 5 – редуктор;

6 – електродвигун; 7 – щит керування; 8 – арматура; 9 – лампа;

10 – екрани; 11 – провідники; 12 – тримач

 

На рисунку 2.6.10. показана принципова схема автоматизації установки ультрафіолетового опромінення УО-4М, що дозволяє задавати щодоби необхідне число проходів опромінювача.

В автоматичному режимі роботи (тумблер SA1 розімкнути) час включення установки задається за допомогою реле часу KT1, а число проходів опромінювача – багатопозиційним перемикачем SA2.

 

Рис. 2.6.10. Принципова електрична схема автоматизації

установки ультрафіолетового опромінення УО-4М

У визначений час замикається контакт КT1 у ланцюзі котушки магнітного пускача КM1, що подає напругу на лампу і на паралельно приєднане до неї реле максимальної напруги КV3, KV4. У перший момент напруга на лампі висока і реле напруги КV3, KV4 починає спрацьовувати, періодично підключаючи замикаючим контактом конденсатор C2, що приводить до запалювання лампи. У процесі розігріву лампи напруга на ній падає і реле КV3, KV4 не спрацьовує.

Через 15...20 хв замикається контакт реле часу KT1 у ланцюзі котушки магнітного пускача KM2 і електродвигун М надає руху опромінювачіам.

У протилежному кінці приміщення приводний двигун реверсується кінцевим вимикачем SQ2, що виключає магнітний пускач KM2 і включає KM3. Опромінювачі почнуть рухатися в зворотному напрямку, котушка крокового шукача КV1 одержить живлення, і його щітки пересунуться на одну ламель.

Опромінювачі зроблять стільки повних проходів (туди і назад), на яке число буде встановлений перемикач SA2. Коли щітки шукача стануть на ламель, з’єднану з заданою оператором ламелью перемикача SA2, реле КV2 знеструмить пускач KM1, що відключить двигун і лампи.

Крім того, котушка крокового шукача одержить живлення через контакти реле KV2 і короткозамкнуте коло шукача КV1. У результаті щітки шукача будуть пересуватися доти, поки не потраплять на розімкнуті контакти. Кроковий шукач КV1 повернеться у вихідне положення, і схема виявиться підготовленою до наступного циклу роботи.

 

Питання для самоконтрою

1. Для чого використовують штучне ультрафіолетове опромі­нен­ня променями області УФ-В?

2. Від чого залежить доза УФ-опромінення тварин і птахів.

3. Принципи автоматизації стаціонарних, переносних та пересувних установок УФ-опромінення.

4. Для чого призначена самохідна установка УОК-1?

5. Будова та принцип дії установки УОК-1.

6. Будова та принцип дії установки УО-4.

 

ТЕСТИ

1. Штучне ультрафіолетове опромінення променями області УФ-В використовують

A. Для утворення в шкірі з провітаміну активно діючого вітаміну D.

B. Для утворення у шкірі вітаміну А.

C. Для посилення кровообігу в підшкірних тканинах.

2. Для автоматичного керування стаціонарними опроміню­ючими установками використовують

A. Апарати керування у функції шляху.

B. Програмні пристрої.

C. Прилади контролю інтенсивності ультрафіолетового опромінення

 

3. Для автоматичного керування пересувними опроміню­валь­ними установками використовують.

A. Апарати керування у функції шляху та програмні пристрої.

B. Програмні пристрої.

C. Регулятори освіленості.

4. Використовуючи принципову електричну схему УОК-1, вкажіть, чим подається команда для переключення електро­двигуна приводу на зворотний хід?

A. Кінцевим вимикачем SQ3.

B. Кінцевим вимикачем SQ2.

C. Кнопкою SB2.

5. Яке джерело ультрафіолетового опромінення використо­вують в пересувній установці УО-4?

A. Дугова ртутна лампа ДРТ-400.

B. Дугова ртутна лампа ДРЛ-400.

A. Люмінісцентна ерітемна лампа ЛЭ -15.

2.6.3. Автоматизація установок інфрачервоного опромінення

При промисловій технології вирощування тварин для збері­гання здоров’я молодняку, значне місце відводиться використанню інфрачервоного опромінення. Інфрачервоне випромінювання – оптичне випромінювання з інтервалом довжини хвиль від 0,002 м до 760 нм, інтервалом частот від 150 ГГц до 400 ТГц. Оскільки інфра­червоні промені погано поглинаються повітрям, то основна їх частина передається безпосередньо тілу, що опромінюється.

Довгохвильове інфрачервоне випромінювання поглинається верхніми шарами шкіри і викликає їх почервоніння, а короткохвильове проникає в підшкірні шари тканин і органів, де його енергія перетворюється в теплову, в результаті чого посилюється кровообіг, активізуються біологічні процеси і процеси обміну речовин. Все це підвищує біологічні функції організму, сприяє зростанню опору простудним захворюванням, а в результаті сприяє кращому росту і розвитку молодняку. Інфрачервоне випромінювання має також позитивний вплив на нервову систему, а через неї і на внутрішні органи.

Інфрачервоне опромінення рекомендується проводити в осінньо-зимовий і ранньовесняний період для курчат, індичат до віку 40…60 днів; качат і гусенят – 15…20 днів; поросят-сисунів – 30 …45; телят і ягнят – до 10…15 денного віку. Залежно від кліматичних умов тривалість сезону опромінення може бути продовжена чи зменшена. Інфрачервоне опромінення можна використовувати також з лікувальною метою.

Джерелом інфрачервоного випромінювання є будь-яке нагріте тіло. В якості джерел інфрачервоного випромінювання широко використовують інфрачервоні дзеркальні лампи типу ИКЗ, ИКЗК, ИКЗС (світлі випромінювачі), ТЕНи, керамічні електронагрівникита інші низькотемпературні електронагрівники (темні випромінювачі). Максимум спектрального розподілу енергії “світлих” випромінювачів не співпадає з максимумом спектральної чутливості шкіри тварин. В цьому відношенні перевагу мають “темні” випромінювачі. З енергетич­ної точки зору вони на 10–25% ефективніші “світлих”. “Темні” випромінювачі порівняно з “світлими” мають переваги за надійністю роботи, строком служби, рівномірністю поля під опро­міню­вачем. В їх спектрі відсутнє видиме випромінювання, що непокоїть тварин. Переваги “світлих” випромінювачів -незначні втрати теплоти через теплопровідність і конвекцію.

Вказані джерела використовуються в інфрачервоних опроміню­вачах ОРИ-1, ООИ-1, ССПО-250, ИКО, брудерах, установках комбіно­ваного опромінення “ИКУФ”, “Луч” та інших.

Аналізуючи дію інфрачервоних випромінювачів, слід звернути увагу, що вагому роль визначає температура обігріву. Вона залежить від типу джерела випромінювання, його потужності та напруги жив­лення, висоти підвісу опромінювача. Використання високо­темпера­турних “світлих” випромінювачів крім того повинно обмежуватися в тривалості, адже тривалий перегрів згубно впливає на білкові тканини, призводить до “спалювання” кисню. Враховуючи це, автоматизація інфрачервоного опромінення повинна передбачати регулювання темпера­тури в зоні дії опромінювачів, а для “світлих” ще й програмне керування тривалістю обігріву.

Для інфрачервоного опромінення молодняку тварин промисло­вість випускає опромінювач ОКБ-3296Т (рис. 2.6.11). Опромінювач має три нагрівальних елементи типу ТЕН потужністю по 400 Вт кожний. Трубчасті нагрівники розміщені в конусоподібному сталь­ному кожусі з подвійними стінками, простір між якими заповнено теплоізоляцією. Знизу нагрівники захищені сіткою. Кожен нагрівний елемент має свій вимикач, розміщений на захисному кожусі 2. Опромінювач забезпечує обігрівання опоросу в одному станко-місці. Зміною висоти підвішування опромінювача та вмиканням різної кількості нагрівних елементів можна регулювати температуру в зоні обігріву.

 

Рис. 2.6.11. Інфрачервоний опромінювач ОКБ-3296Т:

1 – сітка; 2 – кожух; 3 – нагрівник; 4 – кожух виводів

 

Для обігрівання 500...600 курчат віком від 1 до 30 днів при утриманні їх на підлозі використовують брудери БП-1А (рис. 2.6.11). Це зонт у вигляді шестигранної зрізаної металевої піраміди. Він складається з системи блоків 1, вантажу противаг 2, що призначені для регулювання підйому зонта 6. Під зонтом розміщено чотири трубчатих електронагрівачі 4, які забезпечують обігрів. Для освітлення під зонтом знаходиться освітлювальна лампа 5. Всередині зонта встановлено чотири нагрівальних електричних елементи потужністю по 250 Вт кожний, терморегулятор і термометр. Дві секції піраміди мають круглі отвори з відкидними кришками для забезпечення обміну повітря під брудером. На кришці встановлена сигнальна лампа.

Принципова електрична схема брудера зображена на рисунку 2.6.12, б. При вмиканні брудера в електричну мережу напівпро­відниковий регулятор температури одержить живлення і ввімкне нагрівальні елементи ЕК1...EK4 в електричну мережу. Нагрівальні елементи складені за схемою рівноплечого моста, в діагональ якого ввімкнена сигнальна лампа. Сигнальна лампа засвічується при перегорянні одного з нагрівальних елементів. Якщо температура під брудером досягає заданої норми, то регулятор вимикає нагрівальні елементи. При зниженні температури повітря під брудером нагрівальні елементи знову вмикаються.

Опромінювач інфрачервоний ССП 05, що використовується для місцевого обігріву молодняку тварин, виконаний у вигляді сферичного відбивача, в якому за допомогою патрона Е-27 кріпиться інфрачервона дзеркальна лампа ИКЗК-220-250, захищена металевою сіткою. Кріплення опромінювача до перекриття здійснюється за допомогою підвісного пристрою. Висота підвісу для створення відповідного теплового режиму регулюється в межах 0,7м і вище.

 

б

Рисунок 2.6.12. Брудер БП-1А:

а – зовнішній вигляд; б – принципова електрична схема; 1– система блоків;

2 – вантаж противаги; 4 – ТЕНи; 5 – освітлювальна лампа; 6 – зонт

Для управління процесом інфрачервоного обігріву при вико­ристанні опромінювача ССП05-250-003-У3 може бути використана система керування, яка передбачає програмне керування періодич­ністю та тривалістю обігріву і регулювання температури в зоні дії опромінювача. Добова циклічність ввімкнення і вимкнення опроміню­вача здійснюється за допомогою програмного реле часу, яке своїм контактом забезпечує ввімкнення та вимкнення магнітного пускача та подачу напруги в кола лампи опромінювача.

Підтримання температурного режиму на заданому рівні вико­нується пропорційним регулятором температури з регулюванням напруги живлення на лампі.Температура обігріву задається резисто­ром. В основі системи підтримання температурного режиму вико­ристано регулятор напруги, виконаний на базі тиристора. Контроль температури обігріву здійснюється за допомогою терморезистора, що установлений в зоні дії опромінювача.

Особливо ефективним є одночасне опромінення тварин і птиці інфрачервоними і ультрафіолетовими променями. Промисловість випускає для одночасного інфрачервоного і ультрафіолетового опро­мінення установки “ИКУФ”, “Луч”, “СОЖ”. Деякі установки комбіно­ваного опромінення крім того комплектуються аероіонізаторами.

 

Рисунок 2.6.13. Опромінювач установки ІКУФ-1:

1– інфрачервона лампа; 2 – еритемна лампа; 3 – кожух пуск







Дата добавления: 2015-08-12; просмотров: 3913. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия