Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Абсолютная термодинамическая шкала температур





 

Тепловую машину, работающую по обратимому циклу Карно, можно использовать в качестве своеобразного термометра. Правда, этот "термометр" позволяет найти только отношение температур. Но если одной из них приписать определенное значение, тогда можно найти искомую температуру. Подобная процедура позволила В. Томсону ввести физически безупречную шкалу температур, названную абсолютной термодинамической шкалой, или шкалой Кельвина.

В. Томсон обратил внимание на универсальный характер зависимости КПД обратимой машины Карно от эмпирических температур t 1 и t 2 нагревателя и холодильника соответственно. Функция η(t 1, t 2) совершенно не зависит от используемого рабочего вещества и устройства машины. Удалось показать, что величина 1 – η(t 1, t 2) равна отношению значений одной и той же функции t при t = t 2 и t = t 1. Эта функция эмпирической температуры может быть принята за новую температуру, которая не зависит от рода термометрического вещества и устройства термометра.

Итак, вместо η(t 1, t 2) вводится новая функция

 

φ(t 1, t 2) = 1/ (1 – η(t 1, t 2)) = Q 1 Q 2÷.

 

Чтобы найти ее вид, рассматриваются три обратимых цикла Карно. Каждый из них действует между двумя из трех тепловых резервуаров, эмпирические температуры которых t 1, t 2 и t 3. Условно эти циклы изображены на рис. 10. На изотермах 1–2, 4–3 и 6–5 температуры t 1, t 2 и t 3 соответственно. Кривые 1–4–6 и 2–3–5 – адиабаты. Для циклов Карно 1234 и 4356 можно написать

 

Q 1 Q 2÷ = φ(t 1, t 2), ÷ Q 2÷ /÷ Q 3÷ = φ(t 2, t 3),

 

где Q 2 – теплота, полученная от резервуара с температурой t 2 в цикле 1234 (очевидно, Q 2 < 0; ÷ Q 2÷ – теплота, отданная рабочим телом резервуару в этом цикле; столько же теплоты, т. е. ÷ Q 2÷, резервуар отдает в цикле 4356). Если исключить теперь ÷ Q 2÷, то получится соотношение

Q 1 Q 3÷ = φ(t 1, t 2) × φ(t 2, t 3).

 

Оба эти цикла эквивалентны одному 1256: изотерма 4–3 проходится дважды (в противоположных направлениях) и может быть исключена из рассмотрения. Для цикла 1256

p
  V
  Рис. 10

 

Q 1 Q 3÷ = φ(t 1, t 3).

 

Сравнение этого соотношения с предыдущим дает

 

φ(t 1, t 3) = φ(t 1, t 2) × φ(t 2, t 3),

 

откуда

 

φ(t 1, t 2) = φ(t 1, t 3) / φ(t 2, t 3), (25.1)

 

или

 

Q 1 Q 2÷ = φ(t 1, t 3) /φ(t 2, t 3). (25.2)

 

Соотношение (25.1) справедливо при любом значении аргумента t 3. Левая часть не зависит от значения t 3, поэтому и отношение в правой части не может меняться с t 3. Можно фиксировать t 3 и ввести новую функцию Θ(t) = φ(t, t 3). Тогда соотношение (25.2) примет вид

 

Q 1 Q 2÷ = Θ(t 1) / Θ(t 2). (25.3)

 

Таким образом, в какой-то мере удалось расшифровать зависимость к. п. д. цикла Карно от температур t 1 и t 2; соответствующая функция имеет вид

 

η(t 1, t 2) = 1 – Θ(t 2) / Θ(t 1).

 

Так как величина Θ(t) зависит только от температуры t, то она сама может быть принята за меру температуры тела. Величину Θ называют абсолютной термодинамической температурой. Отношение двух термодинамических температур Θ1 = Θ(t 1) и Θ2 = Θ(t 2) определяется соотношением

 

Θ1 / Θ2 = – Q 1 / Q 2, или Θ2 / Θ1 = – Q 2 / Q 1. (25.4)

 

Отношение Θ2 / Θ1 в принципе может быть найдено экспериментально. Для этого надо измерить теплоты Q 1 и Q 2. Однако значение этого отношения еще не определяет температуры Θ1 и Θ2. Они зависят от выбора свободного параметра t 3. Чтобы однозначно определить абсолютную термодинамическую шкалу, необходимо задать значение температуры в некоторой опорной (реперной) точке. Как уже говорилось, в качестве такой точки выбрана тройная точка чистой воды (273,16 К).

Абсолютная термодинамическая температура не может менять своего знака. Так как значение ее в реперной точке выбрано положительным, то абсолютная термодинамическая температура не может принимать отрицательных значений. Это можно доказать, используя метод от противного.

Пусть существует тело, абсолютная температура Θ2 которого отрицательна: Θ2 < 0. Если выбрать это тело в качестве холодильника в обратимой машине Карно, то из соотношения (25.4) следует, что теплота Q 2, получаемая рабочим телом от холодильника, положительна: Q 2 > 0. И от нагревателя, и от холодильника рабочее тело получает положительные количества теплоты. Если оба тепловых резервуара объединить в один, то тепловая машина только и будет делать, что циклически забирать от теплового источника теплоту и полностью превращать ее в работу. Но это процесс Томсона. Он невозможен. Таким образом, абсолютная термодинамическая температура не может быть отрицательной.

Самая низкая температура, допускаемая вторым началом термодинамики, есть Θ = 0. Она называется абсолютным нулем температуры. Второе начало не отвечает на вопрос, достижим или не достижим абсолютный нуль температуры. Состояния некоторых квантовых систем с отрицательными абсолютными температурами, рассматриваемые в статистической физике, термодинамически неравновесные.

Согласно соотношениям (23.3) и (25.4), температура T, показываемая идеально-газовым термометром, совпадает с абсолютной термодинамической температурой. В дальнейшем для обозначения последней будет использоваться символ T.

 







Дата добавления: 2015-08-12; просмотров: 1040. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия