Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные векторы и собственные значения матрицы





Вектор называется собственным вектором матрицы , если найдется такое число , что

 

(1.6)

 

Число называется собственным значением матрицы , соответствующим вектору .

 

Равенство (1.6) можно записать в развернутом виде:

.

 

Откуда получим

 

или в матричном виде

.

 

Полученная система всегда имеет нулевое решение. Для существования ненулевого решения необходимо и достаточно, чтобы определитель системы обращался в нуль:

(1.7)

Определитель является многочленом -ой степени. Он называется характеристическим многочленом матрицы , а уравнение (1.7)– характеристическим уравнением матрицы .

 

Теорема 6. Корни характеристического уравнения матрицы (если они существуют) и только они являются собственными значениями этой матрицы.

 

Пример 13. Найти собственные значения и собственные векторы матрицы:

.

Решение. Составим характеристическое уравнение

или ,

откуда собственные значения матрицы : , .

Находим собственный вектор , соответствующий собственному значению . Для этого решаем матричное уравнение:

или ,

откуда , т.е. . Положив , мы получим, что вектор при любом является собственным вектором матрицы с собственным значением . Аналогично, получим, что вектор при любом является собственным вектором матрицы с собственным значением .n

 

Пример 14. Найти собственные значения и собственные векторы матрицы:

Решение. После преобразований (проделайте это самостоятельно) характеристическое уравнение примет вид:

.

Имеем далее

,

откуда , .

Найдем собственный вектор , соответствующий собственному значению :

Решая полученную систему методом Гаусса, получим , где и произвольные числа не равные нулю одновременно.

Аналогично находим, что при любом есть собственный вектор матрицы с собственным значением .

 







Дата добавления: 2015-08-12; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия