Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные векторы и собственные значения матрицы





Вектор называется собственным вектором матрицы , если найдется такое число , что

 

(1.6)

 

Число называется собственным значением матрицы , соответствующим вектору .

 

Равенство (1.6) можно записать в развернутом виде:

.

 

Откуда получим

 

или в матричном виде

.

 

Полученная система всегда имеет нулевое решение. Для существования ненулевого решения необходимо и достаточно, чтобы определитель системы обращался в нуль:

(1.7)

Определитель является многочленом -ой степени. Он называется характеристическим многочленом матрицы , а уравнение (1.7)– характеристическим уравнением матрицы .

 

Теорема 6. Корни характеристического уравнения матрицы (если они существуют) и только они являются собственными значениями этой матрицы.

 

Пример 13. Найти собственные значения и собственные векторы матрицы:

.

Решение. Составим характеристическое уравнение

или ,

откуда собственные значения матрицы : , .

Находим собственный вектор , соответствующий собственному значению . Для этого решаем матричное уравнение:

или ,

откуда , т.е. . Положив , мы получим, что вектор при любом является собственным вектором матрицы с собственным значением . Аналогично, получим, что вектор при любом является собственным вектором матрицы с собственным значением .n

 

Пример 14. Найти собственные значения и собственные векторы матрицы:

Решение. После преобразований (проделайте это самостоятельно) характеристическое уравнение примет вид:

.

Имеем далее

,

откуда , .

Найдем собственный вектор , соответствующий собственному значению :

Решая полученную систему методом Гаусса, получим , где и произвольные числа не равные нулю одновременно.

Аналогично находим, что при любом есть собственный вектор матрицы с собственным значением .

 







Дата добавления: 2015-08-12; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия