Основные операции над матрицами.
Основными арифметическими операциями над матрицами являются умножение матрицы на число, сложение и умножение матриц. Прежде всего, договоримся считать матрицы равными, если эти матрицы имеют одинаковые порядки и все их соответствующие элементы совпадают. Перейдем к определению основных операций над матрицами. Сложение матриц: Суммой двух матриц, например: A и B, имеющих одинаковое количество строк и столбцов, иными словами, одних и тех же порядков m и n называется матрица С = (Сij)(i = 1, 2, …m; j = 1, 2, …n) тех же порядков m и n, элементы Cij которой равны. Cij = Aij + Bij (i = 1, 2, …, m; j = 1, 2, …, n) (1.2) Для обозначения суммы двух матриц используется запись C = A + B. Операция составления суммы матриц называется их сложением Итак по определению имеем: + = = Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно: 1) переместительным свойством: A + B = B + A 2) сочетательным свойством: (A + B) + C = A + (B + C) Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц. Умножение матрицы на число: Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n) на вещественное число называется матрица C = (Cij) (i = 1, 2, …, m; j = 1, 2, …, n), элементы которой равны Cij = Aij (i = 1, 2, …, m; j = 1, 2, …, n). (1.3) Для обозначения произведения матрицы на число используется запись C = A или C = A . Операция составления произведения матрицы на число называется умножением матрицы на это число. Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами: 1) распределительным свойством относительно суммы матриц: (A + B) = A + B 2) сочетательным свойством относительно числового множителя: ( ) A = ( A) 3) распределительным свойством относительно суммы чисел: ( + ) A = A + A. Замечание: Разностью двух матриц A и B одинаковых порядков естественно назвать такую матрицу C тех же порядков, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: C = A – B.
Перемножение матриц: Произведением матрицы A = (Aij) (i = 1, 2, …, m; j = 1, 2, …, n), имеющей порядки соответственно равные m и n, на матрицу B = (Bij) (i = 1, 2, …, n; j = 1, 2, …, p), имеющую порядки соответственно равные n и p, называется матрица C = (Сij) (i = 1, 2, …, m; j = 1, 2, …, p), имеющая порядки, соответственно равные m и p, и элементы Cij, определяемые формулой Cij = (i = 1, 2, …, m; j = 1, 2, …, p) (1.4) Для обозначения произведения матрицы A на матрицу B используют запись C = AB. Операция составления произведения матрицы A на матрицу B называется перемножением этих матриц. Из сформулированного выше определения вытекает, что матрицу A можно умножить не на всякую матрицу B: необходимо чтобы число столбцов матрицы A было равно числу строк матрицы B. Для того чтобы оба произведения AB и BA не только были определены, но и имели одинаковый порядок, необходимо и достаточно, чтобы обе матрицы A и B были квадратными матрицами одного и того же порядка. Формула (1.4) представляет собой правило составления элементов матрицы C, являющейся произведением матрицы A на матрицу B. Это правило можно сформулировать и словесно: Элемент Cij, стоящий на пересечении i-й строки и j-го столбца матрицы C = AB, равен сумме попарных произведений соответствующих элементов i-й строки матрицы A и j-го столбца матрицы B. В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка
=
Из формулы (1.4) вытекают следующие свойства произведения матрицы A на матрицу B: 1) сочетательное свойство: (AB) C = A (BC); 2) распределительное относительно суммы матриц свойство: (A + B) C = AC + BC или A (B + C) = AB + AC. Вопрос о перестановочном свойстве произведения матриц имеет смысл ставить лишь для квадратных матриц одинакового порядка. Элементарные примеры показывают, что произведений двух квадратных матриц одинакового порядка не обладает, вообще говоря, перестановочным свойством. В самом деле, если положить A = , B = , то AB = , а BA = Те же матрицы, для произведения которых справедливо перестанавочное свойство, принято называть коммутирующими. Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Среди всех диагональных матриц с совпадающими элементами на главной диагонали особо важную роль играют две матрицы. Первая из этих матриц получается, когда все элементы главной диагонали равны единице, называется единичной матрицей n-ого порядка и обозначается символом E. Вторая матрица получается при всех элементах равных нулю и называется нулевой матрицей n-ого порядка и обозначается символом O. Допустим, что существует произвольная матрица A, тогда AE = EA = A, AO = OA = O. Первая из формул характеризует особую роль единичной матрицы Е, аналогичную то роли, которую играет число 1 при перемножении вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул, но и элементарно проверяемое равенство: A + O = O + A = A. Понятие нулевой матрицы можно вводить и не для квадратных матриц.
|