ПРИНЦИП РАДИОМЕТРИЧЕСКОГО МЕТОДА.
Радиометрический анализ, метод анализа химического состава веществ, основанный на использовании радиоактивных изотопов и ядерных излучений. В Р. а. для качественного и количественного определения состава веществ используют радиометрические приборы. Различают несколько способов Р. а. Прямое радиометрическое определение основано на осаждении определяемого иона в виде нерастворимого осадка избытком реагента известной концентрации, содержащего радиоактивный изотоп с известной удельной активностью. После осаждения устанавливают радиоактивность осадка или избытка реагента.
Радиометрическое титрование основано на том, что определяемый в растворе ион образует с реагентом малорастворимое или легкоэкстрагируемое соединение. Индикатором при титровании служит изменение, по мере введения реагента, радиоактивности раствора (в 1-м случае) и раствора или экстракта (во 2-м случае). Точка эквивалентности определяется по излому кривой титрования, выражающей зависимость между объёмом введённого реагента и радиоактивностью титруемого раствора (или осадка). Радиоактивный изотоп может быть введён в реагент или определяемое вещество, а также в реагент и определяемое вещество.
Метод изотопного разбавления основан на тождественности химических реакций изотопов данного элемента. Для его осуществления к анализируемой смеси добавляют некоторое количество определяемого вещества m0, содержащего в своём составе радиоактивный изотоп с известной радиоактивностью I0. Затем выделяют любым доступным способом (например, осаждением, экстракцией, электролизом) часть определяемого вещества в чистом состоянии и измеряют массу m1 и I1 радиоактивность выделенной порции вещества. Общее содержание искомого элемента в анализируемом объекте находят из равенства отношений радиоактивности выделенной пробы к радиоактивности введённого вещества и массы выделенного вещества к сумме масс введённого вещества и находящегося в анализируемой смеси:, откуда.
При активационном анализе исследуемое вещество облучают (активируют) ядерными частицами или жёсткими g-лучами, а затем определяют активность образующихся радиоактивных изотопов, которая пропорциональна числу атомов определяемого элемента, содержанию активируемого изотопа, интенсивности потока ядерных частиц или фотонов и сечению ядерной реакции образования радиоактивного изотопа.
Фотонейтронный метод основан на испускании нейтронов при действии фотонов высокой энергии (g-квантов) на ядра атомов химических элементов. Количество нейтронов, определяемое нейтронными детекторами, пропорционально содержанию анализируемого элемента. Эта энергия фотонов должна превышать энергию связи нуклонов в ядре, которая для большинства элементов составляет ~ 8 Мэв (лишь для бериллия и дейтерия она равна соответственно 1,666 Мэв и 2,226 Мэв; при использовании в качестве источника g-квантов изотопа 124Sb, с Eg = 1,7 и 2,1 Мэв, можно определять бериллий на фоне всех др. элементов).
В Р. а. применяются также методы, основанные на поглощении нейтронов, g-лучей, b-частиц и квантов характеристического рентгеновского излучения радиоактивных изотопов. В методе анализа, основанном на отражении электронов или позитронов, измеряется интенсивность отражённого потока. Энергия частиц, отражённых от лёгких элементов, во много раз меньше энергии частиц, отражённых от тяжёлых элементов, что позволяет определять содержание тяжёлых элементов в их сплавах с лёгкими элементами и в рудах.
25. ОСОБЕННОСТИ РАДИОХИМИЧЕСКОГО АНАЛИЗА. Радиохимический анализ - раздел аналитической химии, совокупность методов определения качественного состава и количественного содержания радиоактивных изотопов в продуктах ядерных превращений. Радиоактивные изотопы могут при этом возникать за счёт ядерных реакций как в природных объектах, так и в специально облученных материалах. В отличие от радиометрического анализа, имеющего целью определение содержания радиоактивных элементов только с помощью физических приборов, целью Р. а. является нахождение содержания радиоактивных изотопов в исследуемых объектах с применением химических методов отделения и очистки. Идентификация радиоактивных изотопов и количественное их определение осуществляются путём измерения γ- или α-активности облученных мишеней или веществ природного происхождения на γ- и α-спектрометрах. Радиометрическая аппаратура позволяет анализировать сложные по составу смеси радиоактивных изотопов без разрушения исходного вещества. При анализе объектов, содержащих большое число радиоактивных изотопов, или объектов, в которых относительные концентрации различных радиоактивных изотопов варьируют в широком диапазоне, а также в тех случаях, когда распад исследуемого радиоактивного изотопа сопровождается испусканием только β-частиц или рентгеновским излучением, исходное вещество растворяют в воде или кислоте. К раствору добавляют изотопные или неизотопные носители и проводят различные химические операции разделения смеси на исследуемые элементы и последующей их очистки (с этой целью наиболее часто используют методы осаждения, экстракции, хроматографии, электролиза, дистилляции и др.). Затем с помощью радиометрических счётчиков и спектрометров ядерных частиц идентифицируют и определяют абсолютные активности радиоактивных изотопов, выделенных в радиохимически и химически чистом состояниях. Поражающее действие радиоактивных излучений требует соблюдения особой техники безопасности. Современный Р. а. получил широкое практическое применение при решении многих аналитических вопросов, возникающих при производстве ядерного топлива, при открытии и изучении свойств новых радиоактивных элементов и изотопов в активационном анализе, в исследовании продуктов различных ядерных реакций. Р. а. используется для обнаружения на поверхности Земли радиоактивных продуктов ядерных взрывов, для изучения индуцированной космическим излучением радиоактивности метеоритов и поверхностных слоев Луны и в ряде др. случаев.
26. СПЕКТРОФОТОМЕТРИЯ,метод исследования и анализа в-в, основанный на измерении спектров поглощения в оптической области электромагнитного излучения. Спектрофотометрический метод анализа основан на спектрально-избирательном поглощении монохроматического потока световой энергии при прохождении его через исследуемый раствор. Метод позволяет определять концентрации отдельных компонентов смесей окрашенных веществ, имеющих максимум поглощения при различных длинах волн, он более чувствителен и точен, чем фотоэлектроколориметрический метод. Известно, что фотоколориметрический метод анализа применим только для анализа окрашенных растворов, бесцветные растворы в видимой области спектра обладают незначительным коэффициентом поглощения. Однако многие бесцветные и слабо окрашенные соединения (особенно органические) обладают Характерными полосами поглощения в ультрафиолетовой и инфракрасной областях спектра, что используют для их количественного определения. Спектрофотометрический метод анализа применим для измерения светопоглощения в различных областях видимого спектра, в ультрафиолетовой и инфракрасной областях спектра, что значительно расширяет аналитические возможности метода.
27. ФОТОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ — группа методов объемного анализа, в которых конечная точка титрования определяется по изменению оптической плотности раствора в ходе хим. р-ии м/д титрантом и титруемым в-вом. Спектрофотометрическое титрование позволяет быстро, точно и просто выполнять анализ. Относит. ошиб. опред. -<0,1 %. Можно титровать с достаточной точностью разбавленные растворы (10−5 моль). При фотометрии используют все многообразие аналитических реакций: кислотно-основные, осаждения, комплексообразования и пр. Различают 2 варианта фотометрического титрования: титрование без индикатора и с одноцветным индикатором, титрование с 2-хцветным индикатором. Если хотя бы один из компонентов реакции окрашен, то титрование в видимой части спектра можно проводить без индикатора. В этом случае кривые титрования прямолинейны и за конечную точку принимается точка излома. Если ни один компонент реакции не окрашен, то применяют цветной индикатор, изменяющий окраску вблизи точки эквивалентности. При этом кривые титрования нелинейны, и за конечную точку принимают точку перегиба. Фототурбидиметрическое титрование. Этот метод применяют тогда, когда определяемое вещество образует взвесь с титрантом. Прибавление каждой новой порции титранта (осадителя) ведет к образованию некоторого количества осадка. При этом мутность раствора увеличивается, что ведет к увеличению поглощения света раствором до достижения точки эквивалентности. При дальнейшем прибавлении титранта образование взвеси прекращается, мутность уменьшается вследствие разбавления, и поглощение света раствором соответственно уменьшается. Максимальная мутность и максимальное поглощение световых лучей соответствуют точке эквивалентности.
28. ФЛУОРИМЕТРИЧЕСКИЙ МЕТОД анализа основан на возбуждении электронных спектров испускания молекул определяемого вещества при внешнем УФ-облучении и измерении интенсивности их фотолюминесценции. Для возникновения явления люминесценции молекулы вещества необходимо перевести из основного состояния в возбужденное с длительностью его существования, достаточной для осуществления излучательного электронного перехода из возбужденного состояния в основное. Это возможно для молекул с относительно устойчивым возбужденным состоянием. Флуориметрический метод определения микропримесей состоит из подготовки анализируемого вещества к анализу и оценки интенсивности его излучения. Высокая чувствительность метода требует применения реактивов с квалификацией особой чистоты или химически чистый. Во многих случаях реактивы подвергаются дополнительной очистке методами перекристаллизации, перегонки, экстракции, хроматографии. Чувствительность отдельных флуориметрических методов (например с морином) соизмерима с чувствительностью спектральных методов и значительно выше спектрофотометрических. Флуориметрические методы в большинстве случаев характеризуются более высокой избирательностью, чем спектрофотометриче-ские. Применяется для очистки вод, нефти и тд.
29. ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИКС) — раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.
По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др.) находятся в терагерцовом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцового диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрометры. С помощью ИК спектроскопии быстро и надёжно идентифицируются разнообразные функциональные группы: карбонильная, гидроксильная, карбоксильная, амидная, амино, циано и др.; а также различные непредельные фрагменты: двойные и тройные углерод-углеродные связи, ароматические или гетероароматические системы. Методами ИК-спектроскопии изучают внутри- и межмолекулярные взаимодействия, например, образование водородных связей. В химии древесины и химии природных соединений с помощью ИК-спектроскопии исследуют структуры углеводов, лигнинов, аминокислот, терпенов, стероидов и многих других веществ. ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИК спектроскопия), раздел мол. оптич. спектроскопии, изучающий спектры поглощения и отражения электромагн. излучения в ИК области, т.е. в диапазоне длин волн от 10-6 до 10-3 м. В координатах интенсивность поглощенного излучения - длина волны (или волновое число) ИК спектр представляет собой сложную кривую с большим числом максимумов и минимумов. Полосы поглощения появляются в результате переходов между колебат. уровнями осн. электронного состояния изучаемой системы (см. Колебательные спектры). Спектральные характеристики (положения максимумов полос, их полуширина, интенсивность) индивидуальной молекулы зависят от масс составляющих ее атомов, геом. строения, особенностей межатомных сил, распределения заряда и др. Поэтому ИК спектры отличаются большой индивидуальностью, что и определяет их ценность при идентификации и изучении строения соединений. Для регистрации спектров используют классич. спектрофотометры и фурье-спектрометры. Осн. части классич. спектрофотометра - источник непрерывного теплового излучения, монохроматор, неселективный приемник излучения. Кювета с в-вом (в любом агрегатном состоянии) помещается перед входной (иногда за выходной) щелью. В качестве диспергирующего устройства монохроматора применяют призмы из разл. материалов (LiF, NaCl, KCl, CsF и др.) и дифракц. решетки. Последовательное выведение излучения разл. длин волн на выходную щель и приемник излучения (сканирование) осуществляется поворотом призмы или решетки. Источники излучения - накаливаемые электрич. током стержни из разл. материалов. Приемники: чувствительные термопары, металлич. и полупроводниковые термосопротивления (болометры) и газовые термопреобразователи, нагрев стенки сосуда к-рых приводит к нагреву газа и изменению его давления, к-рое фиксируется. Выходной сигнал имеет вид обычной спектральной кривой. Достоинства приборов классич. схемы: простота конструкции, относит. дешевизна. Недостатки: невозможность регистрации слабых сигналов из-за малого отношения сигнал: шум, что сильно затрудняет работу в далекой ИК области; сравнительно невысокая разрешающая способность (до 0,1 см-1), длительная (в течение минут) регистрация спектров. В фурье-спектрометрах отсутствуют входная и выходная щели, а осн. элемент - интерферометр. Поток излучения от источника делится на два луча, к-рые проходят через образец и интерферируют. Разность хода лучей варьируется подвижным зеркалом, отражающим один из пучков. Первоначальный сигнал зависит от энергии источника излучения и от поглощения образца и имеет вид суммы большого числа гармонич. составляющих. Для получения спектра в обычной форме производится соответствующее фурье-преобразование с помощью встроенной ЭВМ. Достоинства фурье-спектрометра: высокое отношение сигнал: шум, возможность работы в широком диапазоне длин волн без смены диспергирующего элемента, быстрая (за секунды и доли секунд) регистрация спектра, высокая разрешающая способность (до 0,001 см-1). Недостатки: сложность изготовления и высокая стоимость. Все спектрофотометры снабжаются ЭВМ, к-рые производят первичную обработку спектров: накопление сигналов, отделение их от шумов, вычитание фона и спектра сравнения (спектра р-рителя), изменение масштаба записи, вычисление эксперим. спектральных параметров, сравнение спектров с заданными, дифференцирование спектров и др. Кюветы для ИК спектрофотометров изготовляют из прозрачных в ИК области материалов. В качестве р-рителей используют обычно ССl4, СНСl3, тетрахлорэтилен, вазелиновое масло. Твердые образцы часто измельчают, смешивают с порошком КВr и прессуют таблетки. Для работы с агрессивными жидкостями и газами применяют спец. защитные напыления (Ge, Si) на окна кювет. Мешающее влияние воздуха устраняют вакуумированием прибора или продувкой его азотом. В случае слабо поглощающих в-в (разреженные газы и др.) применяют многоходовые кюветы, в к-рых длина оптич. пути достигает сотен метров благодаря многократным отражениям от системы параллельных зеркал. Большое распространение получил метод матричной изоляции, при к-ром исследуемый газ смешивают с аргоном, а затем смесь замораживают. В результате полуширина полос поглощения резко уменьшается и спектр получается более контрастным. Применение спец. микроскопич. техники позволяет работать с объектами очень малых размеров (доли мм). Для регистрации спектров пов-сти твердых тел применяют метод нарушенного полного внутр. отражения. Он основан на поглощении поверхностным слоем в-ва энергии электромагн. излучения, выходящего из призмы полного внутр. отражения, к-рая находится в оптич. контакте с изучаемой пов-стью. Инфракрасную спектроскопию широко применяют для анализа смесей и идентификация чистых в-в. Количеств. анализ основан на законе Бугера-Ламберта-Бера (см. Абсорбционная спектроскопия), т. е. на зависимости интенсивности полос поглощения от концентрации в-ва в пробе. При этом о кол-ве в-ва судят не по отд. полосам поглощения, а по спектральным кривым в целом в широком диапазоне длин волн. Если число компонентов невелико (4-5), то удается математически выделить их спектры даже при значит. перекрывании последних. Погрешность количеств. анализа, как правило, составляет доли процента. Идентификация чистых в-в производится обычно с помощью информационно-поисковых систем путем автоматич. сравнения анализируемого спектра со спектрами, хранящимися в памяти ЭВМ. Характерные области поглощения ИК излучения наиб. часто встречающихся функц. групп хим. соед. приведены в табл. на форзаце в конце тома. Для идентификации новых в-в (молекулы к-рых могут содержать до 100 атомов) применяют системы искусств. интеллекта. В этих системах на основе спектроструктурных корреляций генерируются мол. структуры, затем строятся их теоретич. спектры, к-рые сравниваются с эксперим. данными. Исследование строения молекул и др. объектов методами инфракрасной спектроскопии подразумевает получение сведений о параметрах мол. моделей и математически сводится к решению т. наз. обратных спектральных задач. Решение таких задач осуществляется последовательным приближением искомых параметров, рассчитанных с помощью спец. теории спектральных кривых к экспериментальным. Параметрами мол. моделей служат массы составляющих систему атомов, длины связей, валентные и торсионные углы, характеристики потенциальной пов-сти (силовые постоянные и др.), дипольные моменты связей и их производные по длинам связей и др. Инфракрасная спектроскопия позволяет идентифицировать пространственные и конформационные изомеры, изучать внутри- и межмолекулярные взаимод., характер хим. связей, распределение зарядов в молекулах, фазовые превращения, кинетику хим. р-ций, регистрировать короткоживущие (время жизни до 10-6 с) частицы, уточнять отдельные геом. параметры, получать данные для вычисления термодинамич. ф-ций и др. Необходимый этап таких исследований - интерпретация спектров, т.е. установление формы нормальных колебаний, распределения колебат. энергии по степеням свободы, выделение значимых параметров, определяющих положение полос в спектрах и их интенсивности. Расчеты спектров молекул, содержащих до 100 атомов, в т.ч. полимеров, выполняются с помощью ЭВМ. При этом необходимо знать характеристики мол. моделей (силовые постоянные, электрооптич. параметры и др.), к-рые находят решением соответствующих обратных спектральных задач или квантовохим. расчетами. И в том, и в другом случае обычно удается получать данные для молекул, содержащих атомы лишь первых четырех периодов периодич. системы. Поэтому инфракрасная спектроскопия как метод изучения строения молекул получил наиб. распространение в орг. и элементоорг. химии. В отд. случаях для газов в ИК области удается наблюдать вращат. структуру колебат. полос. Это позволяет рассчитывать дипольные моменты и геом. параметры молекул, уточнять силовые постоянные и т.д.
|