Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные затухающие колебания диссипативной системы





Все реальные колебательные механические системы являются диссипативными, т.е. полная энергия такой системы постепенно расходуется на совершение работы против сил сопротивления. Поэтому реальные колебания не могут продолжаться бесконечно долго. Допустим, что на маятник кроме восстанавливающего момента силы (5) действует момент сил сопротивления (вязкого трения), пропорциональный первой производной от угла по времени, то есть угловой скорости

, (11)

где r – коэффициент сопротивления.

Уравнение движения (1) маятника с учетом (5) и (11) примет вид дифференциального уравнения

, (12)

которое приводится к стандартному виду линейного однородного дифференциального уравнения второго порядка

или . (13)

Общим решением дифференциального уравнения (13) является зависимость угла поворота от времени

, (14)

которая называется уравнением затухающих колебаний. График затухающих колебаний представлен на рис. 2.

Движение, описываемое уравнением (14), строго говоря, является негармоническим и непериодическим, так как с течением времени последовательные максимальные отклонения точки от положения равновесия уменьшаются. Однако, при несильном затухании зависимость (14) можно рассматривать как уравнение гармонических колебаний с амплитудой затухающих колебаний, которая уменьшается с течением времени по экспоненциальному закону (пунктирная кривая на рис. 2)

, (15)

где a m 0амплитуда колебаний в начальный момент времени t = 0; коэффициент затухания.

Период затухающих колебаний Т условно определяют как промежуток времени между двумя последующими максимумами колеблющейся величины a (см. рис. 2)

Начальная амплитуда a m и начальная фаза колебаний φ 0 зависят от начальных условий.

Частота затухающих колебаний ω зависит от собственной частоты ω0 и коэффициента затухания βи равна

, (16)

то есть частота затухающих колебаний всегда меньше собственной частоты системы (ω < ω0).

Для оценки быстроты затухания колебаний применяют логарифмический декремент затухания λ, определяемый как натуральный логарифм отношения амплитуд, соответствующих моментам времени, отличающимся на период Т (см. рис. 2)

. (17)

Связь между логарифмическим декрементом затухания и коэффициентом затухания устанавливается формулой

. (18)

Для характеристики затухания колебательной системы часто применяется величина Q, называемая добротностью, которая определяет относительную убыль энергии за период, подобно тому, как декремент затухания определяет относительную убыль амплитуды за период. Добротность обратно пропорциональна декременту затухания

. (19)

С учетом формулы (17) закон убывания амплитуды (15) в зависимости от числа колебаний можно представить в виде

. (20)

где n – число колебаний.

Формула (20) в дальнейшем используется для экспериментального нахождения логарифмического декремента затухания λ.







Дата добавления: 2015-09-04; просмотров: 613. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия