Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Операции над нечеткими множествами. Подчеркнем, что нечеткие множества являются обобщением обычных четких множеств





Подчеркнем, что нечеткие множества являются обобщением обычных четких множеств. Поэтому любое определение некоторой операции над нечеткими множествами должно быть справедливым в случае, когда вместо нечетких множеств используются обычные множества. Для обеспечения возможности сравнения нечетких множеств и выполнения над ними различных операций соответствующие нечеткие множества должны быть определены на одном и том же универсуме.

Прежде всего, определим следующие два простейших отношения между нечеткими множествами.

Равенство. Два нечетких множества A={x, mA(x)} и B={x, mB(x)} считаются равными (A=B), если их функции принадлежности принимают равные значения на универсуме X:

mA(x)= m B (x) для любого xÎX. (1.1)

Нечеткое подмножество. Нечеткое множество A={ x, mA(x)} является нечетким подмножеством нечеткого множества B={ x, mB(x)} (обозначают AÍB) тогда и только тогда, когда выполняется следующее условие:

mA(x)£ mB(x) (" x Î X). (1.2)

Говорят, что нечеткое множество B доминирует нечеткое множество A, а нечеткое множество A содержится в нечетком множестве B. Нечеткое множество A называют также несобственным подмножеством множества B.

Если в определении нечеткого подмножества исключается равенство соответствующих нечетких множеств, то A называется собственным нечетким подмножеством B и обозначается: AÌ B. При этом нечеткое множество B строго доминирует нечеткое множество A, а нечеткое множество A строго содержится в нечетком множестве B.

Приведем определения нескольких важных логических операций над нечеткими множествами.

Пересечением двух нечетких множеств A и B называют нечеткое множество С (C=AÇB), заданное на этом же универсуме X, функция принадлежности которого определяется по формуле:

mС(x)= min{mA(x),mB(x)} (" x Î X). (1.3)

Пересечение AÇB есть наибольшее нечеткое подмножество C, которое содержится одновременно в нечетких множествах A и B.

Операцию пересечения нечетких множеств называют также min-пересечением или Ù-пересечением (по определению логической операции "И", обозначаемой знаком "Ù").

Объединением двух нечетких множеств A и B называют нечеткое множество С (D=AÈB), заданное на этом же универсуме X, функция принадлежности которого определяется по формуле:

m D(x)= max{mA(x),mB(x)} (" x Î X). (1.4)

Объединение AÈB есть наименьшее нечеткое множество D, которое доминирует одновременно A и B. Операцию объединения нечетких множеств называют max- объединением или Ú-объединением (по определению логической операции "ИЛИ", обозначаемой знаком "Ú").

Заметим, что эта же операция в терминах вероятностного подхода задается в виде:

m D (x)=m A(x) + m B(x) – mA(x) * m B (x).

Разностью двух нечетких множеств A и B называется некоторое третье нечеткое множество S (обозначается S=A\B), заданное на этом же универсуме X, функция принадлежности которого определяется по формуле:

mS(x) = max{mA(x) - mB (x), 0} (" x Î X), (1.5)

где используется операция арифметической разности двух чисел.

При построении нечетких моделей сложных систем широко используются унарные операции умножения нечеткого множества на число и возведение нечеткого множества в степень.

Умножение нечеткого множества на число. Пусть A={ x, mA(x)} — произвольное нечеткое множество, заданное на универсуме X; a — положительное действительное число, такое, что a × h A £1 (h A — высота нечеткого множества A). Результат операции умножения нечеткого множества A на число a определяется как нечеткое множество B={ x, mB(x)}, заданное на этом же универсуме X, функция принадлежности которого определяется по формуле:

mB(x)= a ×mA(x) (" x Î X). (1.6)

Эту операцию в дальнейшем будем обозначать через a ×A.

Возведение в степень. Пусть A={ x, mA(x)} — произвольное нечеткое множество, заданное на универсуме X; k — положительное действительное число. В этом случае формально можно определить операцию возведения нечеткого множества A в степень k как нечеткое множество B={ x, mB(x)}, заданное на этом же универсуме X, функция принадлежности которого определяется по формуле:

mB(x) = mA(x) k (" x Î X). (1.7)

Примеры графического представления операции возведения нечеткого множества в степень приведены на рис. 1.2.

Рис. 1.2. Представление операций возведения в степень

На основе операции возведения в степень определяются две специальные операции над нечеткими множествами: операция концентрирования и операция растяжения нечеткого множества.

Концентрирование. Пусть на универсуме X задано произвольное нечеткое множество A={ x, mA(x)}. Операция концентрирования, обозначаемая через CON(A), дает в результате нечеткое множество C={ x, mC(x)}, функция принадлежности которого:

mC(x) = mA(x)2 (" x Î X). (1.8)

Очевидно, в этом случае CON(A)=A2.

Например, для конечного нечеткого множества A={<1, 1.0>, <2, 1.0>, <3, 0.9>, <4, 0.8>, <5, 0.6>, <6, 0.5>, <7, 0.4>, <8, 0.2>, <9, 0.1>} его концентрирование равно: CON(A)=A2={<1, 1.0>, <2, 1.0>, <3, 0.81>, <4, 0.64>, <5, 0.36>, <6, 0.25>, <7, 0.16>, <8, 0.04>, <9, 0.01>}.

Растяжение. Операция растяжения, обозначаемая через DIL(A), дает в результате нечеткое множество D={ x, mD(x)}, функция принадлежности которого:

mD(x) = mA(x)0.5 (" x Î X). (1.9)

С помощью операций концентрирования и растяжения выполняется усиление и ослабление лингвистических понятий соответственно. В частности, с помощью операции концентрирования можно задать модификатор «ОЧЕНЬ» для некоторого лингвистического понятия, а с помощью операции растяжения задается модификатор «СРАВНИТЕЛЬНО» или «БОЛЕЕ МЕНЕЕ».

Например, если некоторое понятие, скажем, «старый возраст», определяется как:

A=<x, mA(x)>, тогда понятие "очень старый возраст" определяется так: CON(A)=A2=<x, mA(x)2>.







Дата добавления: 2015-09-04; просмотров: 1563. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия