Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

НЕКОТОРЫЕ ОСНОВНЫЕ СВЕДЕНИЯ, НЕОБХОДИМЫЕ ПРИ РЕШЕНИИ ЗАДАЧ НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ





 

В общем виде задача на собственные значения формулируется следующим образом:

A X = l X,

где A — матрица размерности n х n. Требуется найти n скаляр­ных значений l и собственные векторы X, соответствующие каждому из собственных значений.

Основные определения матричного исчисления

 

1. Матрица A называется симметричной, если

аij = аij, где i, j = 1, 2,..., n.

Отсюда следует симметрия относительно диагонали

аkk, где k == 1, 2,..., n.

Матрица

 

     
     
     

 

является примером симметричной.

 

2. Матрица A называется трехдиагональной, если все ее элементы, кроме элементов главной и примыкающих к ней диа­гоналей, равны нулю. В общем случае трехдиагональная матри­ца имеет вид

 

                 
* *              
* * *            
  * * *          
  . . . . . .    
          * * *  
            * * *
              * *

 

 

Важность трехдиагональной формы обусловлена тем, что некоторые методы преобразований подобия позволяют привести произвольную матрицу к этому частному виду.

 

 

3. Матрица A называется ортогональной, если

АТА = Е,

где Ат—транспонированная матрица A, а Е—единичная матрица. Очевидно, матрица, обратная ортогональной, эквива­лентна транспонированной.

 

 

4. Матрицы А и В называются подобными, если существует такая несингулярная матрица Р, что справедливо соотношение

В = Р-1АР.

 

 







Дата добавления: 2015-09-04; просмотров: 377. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия