Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частотный анализ линеаризованных цепей





При частотном анализе определяется установившееся значение реакции цепи на гармоническое воздействие

x (t) =xm sin w t.

Хотя реальные сигналы, действующие в электронных цепях, как правило, не являются гармоническими, тем не менее гармоническое воздействие широко используется как удобный тестовый сигнал. Гармонический сигнал является единственным физически реализуемым сигналом, который при прохождении через линейную цепь не меняет своей формы (меняется лишь амплитуда и появляется фазовый сдвиг, рис. 2.13).

Рис. 2.13. Реакция цепи на гармоническое воздействие

Сохранение формы облегчает анализ (определение реакции), сводя его к определению амплитуды и фазы выходного сигнала.

С другой стороны, определяя реакцию цепи на гармонические сигналы разных частот (от низких до высоких), можно определить степень инерционности (быстродействие) цепи, так как максимальная скорость изменения гармонического сигнала во времени пропорциональна частоте

x (t) =xm sinw t; =w xm cosw t; =w xm.

При частотном анализе широко используется символический метод (метод комплексных амплитуд), при котором реальный гармонический сигнал

x(t)=xm sin w t

заменяется символическим (физически не существующим) комплексным экспоненциальным воздействием

. (2.9)

Такая замена возможна только для линейной цепи, в которой справедлив принцип суперпозиции и проводится с целью замены дифференциального уравнения цепи алгебраическим.

Действительно, дифференцирование и интегрирование (2.9) по времени приводит к следующим очевидным результатам:

то есть к умножению или делению исходной функции на jw.

Реакция цепи на символический сигнал ищется в виде

(2.10)

где - некоторый комплексный оператор.

Представляя в (2.10) в показательной форме

,

где j (w) - аргумент , К(w) - модуль ,

получим

Таким образом, искомая реакция

Итак, определив , его модуль К (w), аргумент j (w), задача решается однозначно.

Оператор называется амплитудно-фазовой частотной характеристикой цепи (АФЧХ), зависимость называется амплитудной частотной характеристикой (АЧХ), - фазовой частотной характеристикой (ФЧХ).

Очень важным является то обстоятельство, что параметры К (w) и j (w)могут быть определены экспериментально для сколько угодно сложной цепи, что широко применяется на практике.

Продемонстрируем на простом примере алгоритм частотного анализа. Пусть имеется цепь, связь "вход-выход" которой описывается дифференциальным уравнением

.

Введем символические значения

,

подстановка которых в дифференциальное уравнение приводит к равенству

откуда получаем

 

Рис. 2.14. Графики АЧХ и ФЧХ

(2.11)

а окончательно

Рис. 2.15. Прохождение импульсного сигнала через цепь с “завалом” АЧХ в области высоких частот

На основе (2.11) можно построить график АЧХ и ФЧХ (рис. 2.14), по которому определяется реакция цепи на гармоническое воздействие любой частоты (wi).

Кроме того, АЧХ позволяет сделать вывод о том, что данная цепь плохо пропускает высокочастотные сигналы, то есть сложный сигнал, проходя через такую цепь, “потеряет” высокочастотные составляющие. На рис. 2.15 показано изменение формы сигнала при прохождении через цепь с АЧХ на рис. 2.14.

 







Дата добавления: 2015-09-04; просмотров: 729. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия