Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частотный анализ линеаризованных цепей





При частотном анализе определяется установившееся значение реакции цепи на гармоническое воздействие

x (t) =xm sin w t.

Хотя реальные сигналы, действующие в электронных цепях, как правило, не являются гармоническими, тем не менее гармоническое воздействие широко используется как удобный тестовый сигнал. Гармонический сигнал является единственным физически реализуемым сигналом, который при прохождении через линейную цепь не меняет своей формы (меняется лишь амплитуда и появляется фазовый сдвиг, рис. 2.13).

Рис. 2.13. Реакция цепи на гармоническое воздействие

Сохранение формы облегчает анализ (определение реакции), сводя его к определению амплитуды и фазы выходного сигнала.

С другой стороны, определяя реакцию цепи на гармонические сигналы разных частот (от низких до высоких), можно определить степень инерционности (быстродействие) цепи, так как максимальная скорость изменения гармонического сигнала во времени пропорциональна частоте

x (t) =xm sinw t; =w xm cosw t; =w xm.

При частотном анализе широко используется символический метод (метод комплексных амплитуд), при котором реальный гармонический сигнал

x(t)=xm sin w t

заменяется символическим (физически не существующим) комплексным экспоненциальным воздействием

. (2.9)

Такая замена возможна только для линейной цепи, в которой справедлив принцип суперпозиции и проводится с целью замены дифференциального уравнения цепи алгебраическим.

Действительно, дифференцирование и интегрирование (2.9) по времени приводит к следующим очевидным результатам:

то есть к умножению или делению исходной функции на jw.

Реакция цепи на символический сигнал ищется в виде

(2.10)

где - некоторый комплексный оператор.

Представляя в (2.10) в показательной форме

,

где j (w) - аргумент , К(w) - модуль ,

получим

Таким образом, искомая реакция

Итак, определив , его модуль К (w), аргумент j (w), задача решается однозначно.

Оператор называется амплитудно-фазовой частотной характеристикой цепи (АФЧХ), зависимость называется амплитудной частотной характеристикой (АЧХ), - фазовой частотной характеристикой (ФЧХ).

Очень важным является то обстоятельство, что параметры К (w) и j (w)могут быть определены экспериментально для сколько угодно сложной цепи, что широко применяется на практике.

Продемонстрируем на простом примере алгоритм частотного анализа. Пусть имеется цепь, связь "вход-выход" которой описывается дифференциальным уравнением

.

Введем символические значения

,

подстановка которых в дифференциальное уравнение приводит к равенству

откуда получаем

 

Рис. 2.14. Графики АЧХ и ФЧХ

(2.11)

а окончательно

Рис. 2.15. Прохождение импульсного сигнала через цепь с “завалом” АЧХ в области высоких частот

На основе (2.11) можно построить график АЧХ и ФЧХ (рис. 2.14), по которому определяется реакция цепи на гармоническое воздействие любой частоты (wi).

Кроме того, АЧХ позволяет сделать вывод о том, что данная цепь плохо пропускает высокочастотные сигналы, то есть сложный сигнал, проходя через такую цепь, “потеряет” высокочастотные составляющие. На рис. 2.15 показано изменение формы сигнала при прохождении через цепь с АЧХ на рис. 2.14.

 







Дата добавления: 2015-09-04; просмотров: 729. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия