Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ ВЫСШЕГО ПОРЯДКА





 

Так же, как и для случая первой производной, введем итерационный оператор разностей , определяемый с помощью выражения

 

(16)

Пример

.

Стоящие в правой части выражения (16) члены представляют собой биномиальные коэффициенты, которые представляются в общем виде с помощью выражения

. (17)

Тогда формула для вычисления -ой производной кривой Безье запишется как

. (18)

Доказательство формулы (18) очевидно и вытекает из многократного дифференцирования (15).

Запишем два важных частных случая формулы (18) для и :

(19)

и

. (20)

       
   

Следовательно, -ая производная кривой Безье в крайних точках дуги зависит только от ближайших управляющих точек, включая саму крайнюю точку. Для очевидно, что векторы и определяют касательную в точке с параметром . В общем случае касательная в точке определяется вектором и первым вектором , отличным от . Таким образом, касательная в точке может быть определена даже в том случае, если касательный вектор равен нулю. Для другого конца дуги рассуждения аналогичны. На рис. 14.3 показаны примеры определения векторов первой и второй производных в начальной точке дуги кривой.

Рис. 14.3. - Определение векторов первой и второй производных







Дата добавления: 2015-09-04; просмотров: 616. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия