Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ ВЫСШЕГО ПОРЯДКА





 

Так же, как и для случая первой производной, введем итерационный оператор разностей , определяемый с помощью выражения

 

(16)

Пример

.

Стоящие в правой части выражения (16) члены представляют собой биномиальные коэффициенты, которые представляются в общем виде с помощью выражения

. (17)

Тогда формула для вычисления -ой производной кривой Безье запишется как

. (18)

Доказательство формулы (18) очевидно и вытекает из многократного дифференцирования (15).

Запишем два важных частных случая формулы (18) для и :

(19)

и

. (20)

       
   

Следовательно, -ая производная кривой Безье в крайних точках дуги зависит только от ближайших управляющих точек, включая саму крайнюю точку. Для очевидно, что векторы и определяют касательную в точке с параметром . В общем случае касательная в точке определяется вектором и первым вектором , отличным от . Таким образом, касательная в точке может быть определена даже в том случае, если касательный вектор равен нулю. Для другого конца дуги рассуждения аналогичны. На рис. 14.3 показаны примеры определения векторов первой и второй производных в начальной точке дуги кривой.

Рис. 14.3. - Определение векторов первой и второй производных







Дата добавления: 2015-09-04; просмотров: 616. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия