Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задачи 1.3





Максимизировать целевую функцию:

Y=-4x1-x2+3x3-2x4 → max

При ограничениях:

1x1+2x2+0x3+0x4 ≥ 3

-2x1+0x2+0x3+2x4 ≤ -9

-x1-x2+x3+2x4 ≤ -5

x1+0x2-2x3+x4 ≥ 2

x1,2,3,4 ≥ 0

 

Нужно привести систему ограничений к каноническому виду. Для этого следует добавить дополнительные переменные x5, x6, x7 и x8.

1x1+2x2+0x3+0x4 -1x5+0x6+0x7+0x8=3

2x1+0x2+0x3-2x4 +0x5-1x6+0x7+0x8=9

x1+x2-x3-2x4 +0x5+0x6-1x7+0x8=5

x1+0x2-2x3+x4 +0x5+0x6+0x7-1x8=2

Выразим допустимый базис в форме Таккера:

X5=-3-(-1x1-2x2+0x3+0x4)

X6=-9-(-2x1+0x2+0x3+2x4)

X7=-5-(-x1-x2+x3+2x4)

X8=-2-(-x1+0x2+2x3-x4)

Целевая функция в форме Таккера:

Y=0-(4x1+x2-3x3+2x4)

На основании целевой функции и полученных ограничений можно составить симплекс-таблицу (Таблица 1.10).

Таблица 1.10

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5 -3 -1 -2            
X6 -9 -2              
X7 -5 -1 -1            
X8 -2 -1     -1        
Y       -3          

Решение не оптимально, так как имеем в строке Y отрицательные элементы. Используем двойственный симплекс-метод. Вводим в базис X1, выводим из базиса X6. Результат отображен в таблице 1.11.

Таблица 1.11

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5 3/2   -2   -1   -1/2    
X1 9/2       -1   -1/2    
X7 -1/2   -1       -1/2    
X8 5/2       -2   -1/2    
Y -18     -3          

Решение не оптимально, так как имеем в строке Y отрицательные элементы. Используем двойственный симплекс-метод. Вводим в базис X2, выводим из базиса X7. Результат отображен в таблице 1.12.

Таблица 1.12

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5 5/2     -2 -3   1/2 -2  
X1 9/2       -1   -1/2    
X2 1/2     -1 -1   1/2 -1  
X8 5/2       -2   -1/2    
Y -37/2     -2     3/2    

Решение не оптимально, так как имеем в строке Y отрицательные элементы. Используем обычный симплекс-метод. Вводим в базис X3, выводим из базиса X8. Результат отображен в таблице 1.13.

Таблица 1.13

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5         -5     -2  
X1 9/2       -1   -1/2    
X2 7/4       -2   1/4 -1 1/2
X3 5/4       -1   -1/4   1/2
Y -16                

В столбце свободных членов и в строке коэффициентов отсутствуют отрицательные элементы, а следовательно, полученный план оптимален. Произведём проверку, подставив полученные значения для переменных в начальные условия и убедившись в их верности, выписываем ответ.

 

Ответ: Решение оптимально

Y=-16

X=(9/2;7/4;5/4;0;5;0;0;0)

Количество итераций=3

 

 








Дата добавления: 2015-09-07; просмотров: 311. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия