Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задачи методом ветвей и границ 3 страница





Таблица 2.1.33

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X5 11/2       -1   -1/2       -2    
X1 9/2       -1   -1/2            
X7 -1/2           -1/2       -1    
X8 -3/2       -2   -1/2            
X9 -1/2       -1   -1/2            
X2                     -1    
X3                       -1  
X12 1/2           1/2            
Y -14                     -3  

Используем двойственный симплекс-метод. Вводим в базис x4, выводим из базиса x8

Таблица 2.1.34

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X5 25/4           -1/4   -1/2   -2 -1  
X1 21/4           -1/4   -1/2     -1  
X7 -5/4           -3/4   1/2   -1    
X4 3/4           1/4   -1/2     -1  
X9 1/4           -1/4   -1/2     -1  
X2                     -1    
X3                       -1  
X12 -1/4           1/4   1/2        
Y -37/2           1/2            

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x7

Таблица 2.1.35

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X5 20/3             -1/3 -2/3   -5/3 -5/3  
X1 17/3             -1/3 -2/3   1/3 -5/3  
X6 5/3             -4/3 -2/3   4/3 -8/3  
X4 1/3             1/3 -1/3   -1/3 -1/3  
X9 2/3             -1/3 -2/3   1/3 -5/3  
X2                     -1    
X3                       -1  
X12 -2/3             1/3 2/3   -1/3 5/3  
Y -58/3             2/3 10/3   1/3 13/3  

Используем двойственный симплекс-метод. Вводим в базис x10, выводим из базиса x12

Таблица 2.1.36

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
X5               -2 -4     -10 -5
X1                          
X6 -1                        
X4                 -1     -2 -1
X9                          
X2               -1 -2     -5 -3
X3                       -1  
X10               -1 -2     -5 -3
Y -20                        

Решение данной задачи: Решения нет.

 

Задача №7:

Добавляется ограничение x3≤1

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

x11=1-(0x1+0x2+x3+0x4)

Целевая функция в форме Таккера:

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.37

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 -3 -1 -2                  
X6 -9 -2                    
X7 -5 -1 -1                  
X8 -2 -1     -1              
X9 -5 -1                    
X10 -2   -1                  
X11                        
Y       -3                

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.38

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 3/2   -2   -1   -1/2          
X1 9/2       -1   -1/2          
X7 -1/2   -1       -1/2          
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X10 -2   -1                  
X11                        
Y -18     -3                

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.39

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 3/2           -1/2       -1  
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X11                        
Y -20     -3                

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.40

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5                   -1 -2  
X1                   -1    
X7                   -1 -1  
X8         -1         -1    
X6                   -2    
X2                     -1  
X11                        
Y -22     -3                

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x11

Таблица 2.1.41

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5                   -1 -2  
X1                   -1    
X7                   -1 -1 -1
X8         -1         -1   -2
X6                   -2    
X2                     -1  
X3                        
Y -19                      

Решение данной задачи: Y=-19;X=(5;2;1;0;6;1;1;1;0;0;0)

 

Задача №5:

Добавляется ограничение x2≤1

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=1-(0x1+x2+0x3+0x4)

Целевая функция в форме Таккера:

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.42

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 -3 -1 -2                
X6 -9 -2                  
X7 -5 -1 -1                
X8 -2 -1     -1            
X9 -5 -1                  
X10                      
Y       -3              

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.43

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 3/2   -2   -1   -1/2        
X1 9/2       -1   -1/2        
X7 -1/2   -1       -1/2        
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X10                      
Y -18     -3              

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x7

Таблица 2.1.44

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 5/2     -2 -3   1/2 -2      
X1 9/2       -1   -1/2        
X2 1/2     -1 -1   1/2 -1      
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X10 1/2           -1/2        
Y -37/2     -2     3/2        

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.45

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5       -2 -4     -2      
X1                   -1  
X2       -1 -2     -1      
X8         -1         -1  
X6                   -2  
X10                   -1  
Y -20     -2              

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x10

Таблица 2.1.46

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1  
X1                   -1  
X2                      
X8         -5     -2     -2
X6                   -2  
X3                   -1  
Y -18                    

Решение данной задачи: Y=-18;X=(5;1;1;0;4;1;0;1;0;0)







Дата добавления: 2015-09-07; просмотров: 353. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия