Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задачи методом ветвей и границ 1 страница





Согласно методу для каждой целочисленной переменной возможно задать верхнюю и нижнюю границу, в пределах которых содержится ее оптимальное значение. В данном случае нижняя граница равна нулю. На практике верхний предел не вводят в виде дополнительного ограничения, а учитывают его в процессе решения не явно, то есть к исходным ограничения на практике добавляется ограничение, которое определяется самим методом.

Решаем исходную задачу - Задачу №1 (п.1.3) до получения оптимального решения методом линейного программирования. Воспользуемся итоговой таблицей (Таблица 1.13). Эта таблица и будет исходной для нашей задачи (Таблица 2.1.6).

Таблица 2.1.6

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5         -5     -2  
X1 9/2       -1   -1/2    
X2 7/4       -2   1/4 -1 1/2
X3 5/4       -1   -1/4   1/2
Y -16                

 

Полученное решение не удовлетворяет требованиям целочисленности.

Поэтому составляем относительно любой нецелочисленной переменной две новых порожденных задачи (2 и 3). Выберем переменную x1. ПримемY1 = 0.

Новые ограничения строятся по формуле:

1) х ≤ [х*]

2) x ≥ [х*] + 1

где [х*] – целая часть числа х* (нецелочисленная переменная)

Задача №2:

Добавляется ограничение x1≥5. Тогда задача примет вид:

 

При ограничениях:

x1≥5

и целые.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

 

Таблица 2.1.7

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 -3 -1 -2 0 0 1 0 0 0 0
X6 -9 -2 0 0 2 0 1 0 0 0
X7 -5 -1 -1 1 2 0 0 1 0 0
X8 -2 -1 0 2 -1 0 0 0 1 0
X9 -5 -1 0 0 0 0 0 0 0 1
Y 0 4 1 -3 2 0 0 0 0 0

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.8

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 3/2   -2   -1   -1/2      
X1 9/2       -1   -1/2      
X7 -1/2   -1       -1/2      
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -18     -3            

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x7

Таблица 2.1.9

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 5/2     -2 -3   1/2 -2    
X1 9/2       -1   -1/2      
X2 1/2     -1 -1   1/2 -1    
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -37/2     -2     3/2      

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.10

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5       -2 -4     -2    
X1                   -1
X2       -1 -2     -1    
X8         -1         -1
X6                   -2
Y -20     -2            

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.11

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5         -5     -2    
X1                   -1
X2 3/2       -5/2     -1 1/2 1/2
X3 3/2       -1/2       1/2 -1/2
X6                   -2
Y -17                  

Решение данной задачи: Y=-17; X=(5;3/2;3/2;0;5;1;0;0;0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

Для образования порожденных задач выберем переменную x2

Задача №4:

Добавляется ограничение x2≥2.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.12

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 -3 -1 -2                
X6 -9 -2                  
X7 -5 -1 -1                
X8 -2 -1     -1            
X9 -5 -1                  
X10 -2   -1                
Y       -3              

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.13

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 3/2   -2   -1   -1/2        
X1 9/2       -1   -1/2        
X7 -1/2   -1       -1/2        
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X10 -2   -1                
Y -18     -3              

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.14

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 11/2       -1   -1/2       -2
X1 9/2       -1   -1/2        
X7 3/2           -1/2       -1
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X2                     -1
Y -20     -3              

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.15

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7                   -1 -1
X8         -1         -1  
X6                   -2  
X2                     -1
Y -22     -3              

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.16

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7 1/2       5/2       -1/2 -1/2 -1
X3 3/2       -1/2       1/2 -1/2  
X6                   -2  
X2                     -1
Y -35/2       1/2       3/2 5/2  

Решение данной задачи: Y=-35/2; X=(5;2;3/2;0;6;1;1/2;0;0;0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

 

Для образования порожденных задач выберем переменную x3

Задача №6:

Добавляется ограничение x3≥2

Выразим допустимый базис в форме Таккера

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

x11=-2-(0x1+0x2-x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.17

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 -3 -1 -2                  
X6 -9 -2                    
X7 -5 -1 -1                  
X8 -2 -1     -1              
X9 -5 -1                    
X10 -2   -1                  
X11 -2     -1                
Y       -3                

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.18

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 3/2   -2   -1   -1/2          
X1 9/2       -1   -1/2          
X7 -1/2   -1       -1/2          
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X10 -2   -1                  
X11 -2     -1                
Y -18     -3                

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.19

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 3/2           -1/2       -1  
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X11 -2     -1                
Y -20     -3                

Используем двойственный симплекс-метод. Вводим в базис x3, выводим из базиса x11

Таблица 2.1.20

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 -1/2           -1/2       -1  
X8 -3/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X3                       -1
Y -14                     -3

Используем двойственный симплекс-метод. Вводим в базис x4, выводим из базиса x8







Дата добавления: 2015-09-07; просмотров: 328. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия