Студопедия — Решение задачи методом ветвей и границ 1 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение задачи методом ветвей и границ 1 страница






Согласно методу для каждой целочисленной переменной возможно задать верхнюю и нижнюю границу, в пределах которых содержится ее оптимальное значение. В данном случае нижняя граница равна нулю. На практике верхний предел не вводят в виде дополнительного ограничения, а учитывают его в процессе решения не явно, то есть к исходным ограничения на практике добавляется ограничение, которое определяется самим методом.

Решаем исходную задачу - Задачу №1 (п.1.3) до получения оптимального решения методом линейного программирования. Воспользуемся итоговой таблицей (Таблица 1.13). Эта таблица и будет исходной для нашей задачи (Таблица 2.1.6).

Таблица 2.1.6

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8
X5         -5     -2  
X1 9/2       -1   -1/2    
X2 7/4       -2   1/4 -1 1/2
X3 5/4       -1   -1/4   1/2
Y -16                

 

Полученное решение не удовлетворяет требованиям целочисленности.

Поэтому составляем относительно любой нецелочисленной переменной две новых порожденных задачи (2 и 3). Выберем переменную x1. ПримемY1 = 0.

Новые ограничения строятся по формуле:

1) х ≤ [х*]

2) x ≥ [х*] + 1

где [х*] – целая часть числа х* (нецелочисленная переменная)

Задача №2:

Добавляется ограничение x1≥5. Тогда задача примет вид:

 

При ограничениях:

x1≥5

и целые.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

 

Таблица 2.1.7

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 -3 -1 -2 0 0 1 0 0 0 0
X6 -9 -2 0 0 2 0 1 0 0 0
X7 -5 -1 -1 1 2 0 0 1 0 0
X8 -2 -1 0 2 -1 0 0 0 1 0
X9 -5 -1 0 0 0 0 0 0 0 1
Y 0 4 1 -3 2 0 0 0 0 0

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.8

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 3/2   -2   -1   -1/2      
X1 9/2       -1   -1/2      
X7 -1/2   -1       -1/2      
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -18     -3            

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x7

Таблица 2.1.9

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5 5/2     -2 -3   1/2 -2    
X1 9/2       -1   -1/2      
X2 1/2     -1 -1   1/2 -1    
X8 5/2       -2   -1/2      
X9 -1/2       -1   -1/2      
Y -37/2     -2     3/2      

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.10

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5       -2 -4     -2    
X1                   -1
X2       -1 -2     -1    
X8         -1         -1
X6                   -2
Y -20     -2            

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.11

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9
X5         -5     -2    
X1                   -1
X2 3/2       -5/2     -1 1/2 1/2
X3 3/2       -1/2       1/2 -1/2
X6                   -2
Y -17                  

Решение данной задачи: Y=-17; X=(5;3/2;3/2;0;5;1;0;0;0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

Для образования порожденных задач выберем переменную x2

Задача №4:

Добавляется ограничение x2≥2.

Выразим допустимый базис в форме Таккера:

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.12

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 -3 -1 -2                
X6 -9 -2                  
X7 -5 -1 -1                
X8 -2 -1     -1            
X9 -5 -1                  
X10 -2   -1                
Y       -3              

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.13

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 3/2   -2   -1   -1/2        
X1 9/2       -1   -1/2        
X7 -1/2   -1       -1/2        
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X10 -2   -1                
Y -18     -3              

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.14

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5 11/2       -1   -1/2       -2
X1 9/2       -1   -1/2        
X7 3/2           -1/2       -1
X8 5/2       -2   -1/2        
X9 -1/2       -1   -1/2        
X2                     -1
Y -20     -3              

Используем двойственный симплекс-метод. Вводим в базис x6, выводим из базиса x9

Таблица 2.1.15

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7                   -1 -1
X8         -1         -1  
X6                   -2  
X2                     -1
Y -22     -3              

Используем обычный симплекс-метод. Вводим в базис x3, выводим из базиса x8

Таблица 2.1.16

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X5                   -1 -2
X1                   -1  
X7 1/2       5/2       -1/2 -1/2 -1
X3 3/2       -1/2       1/2 -1/2  
X6                   -2  
X2                     -1
Y -35/2       1/2       3/2 5/2  

Решение данной задачи: Y=-35/2; X=(5;2;3/2;0;6;1;1/2;0;0;0)

 

Решение данной задачи не удовлетворяет требованиям целочисленности, поэтому необходимо простроить две порождённые задачи.

 

Для образования порожденных задач выберем переменную x3

Задача №6:

Добавляется ограничение x3≥2

Выразим допустимый базис в форме Таккера

x5=-3-(-x1-2x2+0x3+0x4)

x6=-9-(-2x1+0x2+0x3+2x4)

x7=-5-(-x1-x2+x3+2x4)

x8=-2-(-x1+0x2+2x3-x4)

x9=-5-(-x1+0x2+0x3+0x4)

x10=-2-(0x1-x2+0x3+0x4)

x11=-2-(0x1+0x2-x3+0x4)

Целевая функция в форме Таккера

Y=0-(4x1+x2-3x3+2x4)

Таблица 2.1.17

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 -3 -1 -2                  
X6 -9 -2                    
X7 -5 -1 -1                  
X8 -2 -1     -1              
X9 -5 -1                    
X10 -2   -1                  
X11 -2     -1                
Y       -3                

Используем двойственный симплекс-метод. Вводим в базис x1, выводим из базиса x6

Таблица 2.1.18

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 3/2   -2   -1   -1/2          
X1 9/2       -1   -1/2          
X7 -1/2   -1       -1/2          
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X10 -2   -1                  
X11 -2     -1                
Y -18     -3                

Используем двойственный симплекс-метод. Вводим в базис x2, выводим из базиса x10

Таблица 2.1.19

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 3/2           -1/2       -1  
X8 5/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X11 -2     -1                
Y -20     -3                

Используем двойственный симплекс-метод. Вводим в базис x3, выводим из базиса x11

Таблица 2.1.20

БП СЧ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X5 11/2       -1   -1/2       -2  
X1 9/2       -1   -1/2          
X7 -1/2           -1/2       -1  
X8 -3/2       -2   -1/2          
X9 -1/2       -1   -1/2          
X2                     -1  
X3                       -1
Y -14                     -3

Используем двойственный симплекс-метод. Вводим в базис x4, выводим из базиса x8







Дата добавления: 2015-09-07; просмотров: 307. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия