Точка пересечения кривых МС, AVC и АТС
Существует один забавный факт, который очень нравится экономистам: если вы построите графически кривую предельных издержек (MС), эта кривая пересечет как кривую средних переменных издержек (AVC), так и кривую средних совокупных издержек (АТС) в их минимальных точках, разместившихся в нижней части соответствующих им U-образных кривых. (Что?! Вы считаете, тут нечему радоваться? Продолжайте чтение, возможно, я смогу повысить степень вашего удовлетворения.) Посмотрите на рис. 10.2, где я начертил кривые МС, AVC и АТС, которые получились в результате распределения на графике данных из табл. 10.1. Кривая МС проходит сквозь точки минимума кривых AVC и АТС. Это происходит по причине того, что предельная себестоимость каждой единицы товара определяет возрастание или снижение кривых AVC и АТС. Вам не совсем ясно? Тогда давайте постараемся упростить пример, ненадолго видоизменив его; вместо того, чтобы думать о затратах, давайте подумаем о высоте человеческого роста.
Представьте комнату, в которой находится десять человек. Предположим, вы определили, что средний рост людей, находящихся в комнате, составляет 5 футов 6 дюймов. Теперь представьте, что произойдет со средним ростом, если в комнату войдет еще один человек. Если рост одиннадцатого человека будет превышать предыдущее среднее значение, то среднее возрастет. Если рост одиннадцатого человека будет ниже предыдущего среднего значения, то среднее уменьшится. Если рост одиннадцатого человека будет равен 5 футам 6 дюймам, то среднее останется прежним. То же самое можно сказать о предельных и средних издержках. Для q единиц продукта вы можете вычислить величину AVC и АТС точно так же, как средний рост первых десяти человек. После этого AVC и АТС начнут или подниматься, или опускаться, в зависимости от МС следующей единицы продукта, точно так же, как и средний рост людей, находящихся в комнате, увеличивается, уменьшается или остается неизменным в зависимости от роста человека, входящего в комнату одиннадцатым. Вот что это значит. Если МС меньше предыдущих средних издержек, среднее падает. Если МС больше предыдущих средних издержек, среднее растет. Если МС равно предыдущим средним издержкам, среднее останется прежним. Вы можете увидеть все эти эффекты в виде графиков, если посмотрите на рис. 10.2. Во-первых, взгляните на уровень продукта в 140 бутылок. На этом уровне продукта МС произведенной следующей бутылки меньше, чем АТС и AVC, а это значит — АТС и AVC начнут снижаться, если объем производимого продукта возрастет на одну дополнительную бутылку. Вот почему кривые AVC и АТС при этом уровне продукта плавно снижаются. Средние кривые будут вынуждены снизиться из-за низкого значения МС. Затем давайте посмотрим на уровень продукта в 440 бутылок. Вы можете видеть, что МС на этом уровне продукта выше АТС и AVC. Следовательно, как AVC, так и АТС должны подниматься. Это отражено в геометрическом виде поднимающимися вверх кривыми AVC и АТС. Кривые поднимаются вверх, потому что высокое значение МС "толкает" их на это. Теперь давайте соберем части в единое целое. Заметьте, что кривая МС вынуждает кривую AVC и кривую АТС стать U-образными (хотя и приблизительно). На рис. 10.2, слева, тот факт, что МС меньше средних кривых, означает, что средние кривые снижаются. На рис. 10.2, справа, тот факт, что МС больше средних кривых, означает, что средние кривые поднимаются. Итак, вы получаете совершенное подтверждение того факта, что кривая МС должна пересечь две средних кривых в соответствующих минимальных точках — в нижней части соответствующих им U-образных кривых. Слева от этой точки пересечения среднее должно снижаться, поскольку МС меньше среднего. А справа среднее должно подниматься, поскольку МС больше среднего. Но в точке пересечения кривых средняя кривая не поднимается и не опускается, потому что МС этой единицы продукта равна текущему среднему. (Другими словами, если в комнату вошел человек, имеющий рост 5 футов 6 дюймов, а средний рост находящихся в ней людей тоже составляет 5 футов 6 дюймов, то среднее остается неизменным.) Экономистам нравится распространяться по поводу данного факта, но в действительности он — лишь отражение того влияния, которое увеличивающаяся а затем уменьшающаяся отдача оказывает на кривые издержек. Издержки вначале уменьшаются, а затем возрастают. И есть в середине одна точка, в которой они на мгновение остаются одинаковыми, замороженными, при переходе от падения к росту. Эта точка должна находиться там, где предельные издержки равны средним издержкам, поскольку только в случае равенства МС и средних издержек последние достигают своего минимума.
В предыдущем разделе я объяснил, как предельные издержки соотносятся со средними издержками. Теперь, ознакомив вас с этой важной информацией, я готов перейти к объяснению того, как менеджеры определяют количество продукта, которое нужно производить для максимизации прибыли. (Вы уже подумывали о том, что мы никогда не перейдем к этому вопросу, не так ли?) Нужно запомнить один грустный, но справедливый факт: предприятия не могут всегда получать прибыль. Это происходит по причине того, что в существующих в определенной отрасли условиях идеальной конкуренции фирма не может контролировать цену на производимые ею продукты, и иногда эта цена оказывается слишком низкой для того, чтобы предприятие могло получить прибыль, — безотносительно того, какое количество товара было ею произведено. Когда такое случается, то лучшее, что может сделать фирма, это минимизировать свои убытки и надеяться на изменение цены. Если цена упала достаточно низко, лучше всего немедленно закрыть производство, поскольку в этом случае фирма потеряет только свои фиксированные издержки. (Разницу между фиксированными и переменными издержками я объясняю в разделе "Анализ структуры издержек предприятия", ранее в этой главе.) Далее в этой главе эта печальная ситуация рассматривается более детально. Но вначале рассмотрим более удачный случай — когда рыночная цена достаточно высока, чтобы фирма хотела производить определенное количество продукта. Как вы увидите, это может значить, а может и не значить, что фирма получает прибыль, но даже во втором случае ее убытки не настолько велики, чтобы остановить производство.
Волшебная формула: когда MR = МС
В типичном случае, когда рыночная цена достаточно высока для того, чтобы фирма хотела производить определенное количество продукта, для определения оптимального количества продукта, q, которое должна производить фирма, используется до смешного, простая формула. Фирма хочет производить тот уровень продукта, при котором предельный доход равен предельным издержкам (MR = МС), - Производство, при котором MR = МС, позволяет получить следующие два результата. Оно минимизирует убытки фирмы, если фирма терпит убытки из-за низкой продажной цены на свой продукт. Оно максимизирует прибыль фирмы, если она может получать прибыль благодаря тому, что продажная цена достаточно высока. Идея, заключенная в равенстве MR и МС, очень проста. К ней приводит анализ затрат и выгод. Если производство и продажа бутылки приносит больше дохода, чем затраты на ее производство, значит, ее нужно делать. Если же нет, значит, ее делать не нужно. Правда, это легко запомнить? Давайте теперь снова вернемся к нашему примеру. Представьте, что корпорация LemonAid может продать каждую бутылку лимонада, которую она производит, за 2 долл. Экономистам нравится говорить, что предельный доход от каждой бутылки составляет 2 долл., поскольку каждая произведенная бутылка при продаже приносит дополнительные 2 долл. Менеджеры фирмы должны решить, сколько бутылок лимонада должно быть произведено на их предприятии, основываясь на том, будет ли каждая данная бутылка стоить больше или меньше 2 долларов предельного дохода, который получит фирма в результате продажи лимонада. Будьте очень внимательны на этом этапе. Вам нужно запомнить, что та стоимость, на которую обращают внимание менеджеры, — это предельная стоимость каждой отдельной бутылки, МС. Это потому, что если они решают производить именно эту бутылку, то нужно рассматривать стоимость производства этой бутылки отдельно от стоимости производства всех произведенных ранее бутылок для того, чтобы сравнить ее с доходом, который бутылка принесет, если ее произведут и продадут. Только МС отдельной бутылки имеет значение; все бутылки, произведенные ранее, остаются без внимания, а менеджеры нацелены на определение стоимости производства следующей. Если МС этой бутылки меньше 2 долл., то ясно, что есть смысл ее производить; в этом случае менеджеры примут решение ее производить. С другой стороны, если МС будет превышать 2 долл., производство бутылки приведет к получению убытка; в таком случае менеджеры примут решение не производить ее. Рассматривая МС каждой отдельной бутылки (первой, пятой, девяносто седьмой и т.д.) и сравнивая ее с предельным доходом, который может получить фирма от ее продажи, менеджеры могут точно определить, сколько бутылок нужно производить их предприятию. Необходимые сравнения могут быть проведены с помощью таблицы расходов, такой, как табл. 10.1, но еще проще будет это сделать с помощью графика. На рис. 10.3 я начертил кривые предельных издержек (МС), средних переменных издержек (AVC) и средних совокупных издержек (АТС) корпорации LemonAid. Еще я провел горизонтальную линию, начинающуюся на отметке "2 долл.", — таков предельный доход от продажи каждой из бутылок, которую фирма может решить производить. Я обозначил линию формулой р = MR = 2 долл. для подтверждения того факта, что продажная цена бутылки составляет 2 долл., что совпадает с предельным доходом. Взгляните на количество q*, которое соответствует точке пересечения горизонтальной линии р = MR = 2 долл. и кривой МС. Как вы видите, q* = 440 бутылок. Это уровень продукта, который выберет фирма для получения максимальной прибыли.
Для того чтобы понять, почему привязка к MR = МС максимизирует прибыль, давайте вернемся к табл. 10.1, приведенной ранее в этой главе, и рассмотрим каждую единицу продукции, q, для которой справедливо неравенство q < 440. Для всех этих единиц предельный доход будет больше предельной себестоимости (MR > МС), что значит: доходы от продажи каждой из этих бутылок превысят затраты на их производство. Например, давайте возьмем бутылку под номером 140. Ее предельная себестоимость составляет всего 0,89 долл., но ее можно продать за 2,00 долл. Понятно, что вам нужно произвести эту бутылку, поскольку от ее продажи вы получите больше денег, чем было затрачено на ее производство. Это утверждение справедливо для всех остальных бутылок, где q < 440; вам нужно производить их, потому что все они принесут вам прибыль. С другой стороны, для всех единиц, превышающих уровень продукта q* (q > 440), справедливо обратное: предельный доход меньше предельной себестоимости (MR < МС). Вы потеряете деньги, если вы произведете и продадите эти бутылки. Например, на уровне продукта в 470 бутылок, МС составит 2,67 долл., тогда как MR составляет всего 2,00 долл. Если вы произвели продукт на этом уровне, то на бутылке под номером 470 вы потеряете 67 центов. Ясно, что вам не захочется в этом участвовать. Сравнивая предельный доход и предельные издержки на всех уровнях продукта, вы можете видеть, что менеджеры корпорации LemonAid хотят производить точно q* = 440 единиц — то количество единиц, при котором линии MR и МС пересекаются. Как я упоминал во введении к этому разделу, производство, где MR = МС, не гарантирует вам прибыли, но оно хотя бы гарантирует, что вы производите бутылки, приносящие больше денег, чем было потрачено на их производство. Причина, по которой эта формула сама по себе не может гарантировать прибыль, заключена в том, что она не принимает в расчет фиксированные издержки, которые вам нужно платить безотносительно уровня продукта, который вы производите. Даже если вы производите бутылки, чей предельный доход по крайней мере равен предельной себестоимости, вы все еще можете не получить достаточно выручки для оплаты ващих фиксированных издержек.
|