По каким признакам классифицируются экспертные системы? Стр 18
Классификация экспертных систем. Экспертные системы как любой сложный объект можно определить только совокупностью характеристик. Выделим следующие характеристики ЭС: А. Назначение; Б. Проблемная область; В. Глубина анализа проблемной области; Г. Тип используемых методов и знаний; Д. Класс системы; Е. Стадия существования; Ж. Инструментальные средства. Перечисленный набор характеристик не претендует на полноту в связи с отсутствием общепринятой классификации), а определяет ЭС как целое, не выделяя отдельных компонентов (способ представления знаний, решения задач и т.п.). А. Назначение определяется следующей совокупностью параметров: цель создания ЭС — для обучения специалистов, для решения задач, для автоматизации рутинных работ, для тиражирования знаний экспертов и т.п.; основной пользователь — не специалист в области экспертизы, специалист, учащийся. Б. Проблемная область может быть определена совокупностью параметров: предметной областью и задачами, решаемыми в предметной области, каждый из которых может рассматриваться с точки зрения как конечного пользователя, так и разработчика ЭС. С точки зрения пользователя, предметную область можно характеризовать описанием области в терминах пользователя, включающим наименование области, перечень и взаимоотношение подобластей и т.п., а задачи, решаемые существующими ЭС, — их типом. Обычно выделяют следующие типы задач: • интерпретация символов или сигналов — составление смыслового описания по входным данным; • предсказание — определение последствий наблюдаемых ситуаций; • диагностика — определение состояния неисправностей, заболеваний по симптомам; • конструирование — разработка объекта с заданными свойствами при соблюдении установленных ограничений; • планирование — определение последовательности действий, приводящих к желаемому состоянию объекта; • слежение — наблюдение за изменяющимся состоянием объекта и сравнение его показателей с установленными или желаемыми; • управление — воздействие на объект для достижения желаемого поведения. С точки зрения разработчика целесообразно выделять статические и динамические предметные области. Предметная область называется статической, если описывающие ее исходные данные не изменяются во времени (точнее рассматриваются как не изменяющиеся за время решения задачи). Статичность области означает неизменность описывающих ее исходных данных. Если исходные данные, описывающие предметную область, изменяются за время решения задачи, то предметную область называют динамической. Кроме того, предметные области можно характеризовать следующими аспектами: числом и сложностью сущностей, их атрибутов и значений атрибутов; связностью сущностей и их атрибутов; полнотой знаний; точностью знаний (знания точны или правдоподобны; правдоподобность знаний представляется некоторым числом или высказыванием). Решаемые задачи, с точки зрения разработчика ЭС, также можно разделить на статические и динамические. Будем говорить, что ЭС решает динамическую или статическую задачу, если процесс решения задачи изменяет или не изменяет исходные данные о текущем состоянии предметной области. В подавляющем большинстве существующих ЭС исходят из предположения статичности предметной области и решают статистические задачи. Будем называть такие ЭС статическими. ЭС, которые имеют дело с динамическими предметными областями и решают статистические или динамические задачи, будем называть динамическими. В последние годы стали появляться первые динамические ЭС. Видимо, решение многих важнейших практических неформализованных задач возможно только с помощью динамических, а не статических ЭС. Следует подчеркнуть, что на традиционных (числовых) последовательных ЭВМ с помощью существующих методов инженерии знаний можно решать только статические задачи, а для решения динамических задач, составляющих большинство реальных приложений, необходимо использовать специализированные символьные ЭВМ. На рисунке 1.3 представлена архитектура статической и динамической ЭС]. Статическая ЭС совпадает с традиционной схемой (см. рисунок 1.1). Решаемые задачи, кроме того, можно характеризовать следующими аспектами: числом и сложностью правил, используемых в задаче; связностью правил; пространством поиска; количеством активных агентов, изменяющих предметную область; классом решаемых задач. По степени сложности выделяют простые и сложные правила. К сложным относят правила, текст знаний которых на естественном языке занимает 1/3 страницы и больше. Правила, текст которых занимает менее 1/3 страницы, относят к простым. По степени связности правил задачи делятся на связные и малосвязные. К связным относят задачи (подзадачи), которые не удается разбить на независимые задачи. Малосвязные задачи удается разбить на некоторое количество независимых подзадач. Можно сказать, что степень сложности определяется не просто общим количеством правил данной задачи, а количеством правил в ее наиболее связной независимой подзадаче. Рис. 1.3. Архитектура статической и динамической ЭС
Пространство поиска может быть определено, по крайней мере, тремя подаспектами: размером, глубиной и шириной. Размер пространства поиска дает обобщенную характеристику сложности задачи. Выделяют малые (до 10! состояний) и большие (свыше 10! состояний) пространства поиска. Глубина пространства поиска характеризуется средним числом последовательно применяемых правил, преобразующих исходные данные в конечный результат, ширина пространства — средним числом правил, пригодных к выполнению в текущем состоянии. Количество активных агентов существенно влияет на выбор метода решения. Выделяют следующие значения данного аспекта: ни одного агента, один агент, несколько агентов. Класс решаемых задач характеризует методы, используемые ЭС для решения задачи. Данный аспект в существующих ЭС применяет следующие значения: задачи расширения, доопределения, преобразования. Задачи расширения и доопределения являются статическими, а задачи преобразования — динамическими. К задачам расширения относятся задачи, в процессе решения которых осуществляется только увеличение информации о предметной области. Они не приводят ни к изменению ранее выведенных данных, ни к выбору другого состояния области. Типичный задачей этого класса являются задачи классификации. К задачам доопределения относятся задачи с неполной или неточной информацией о реальной предметной области. Цель их решения — выбор из множества альтернативных текущих состояний предметной области того, которое адекватно исходным данным. В случае неточных данных альтернативные текущие состояния возникают как результат ненадежности данных и правил, что приводит к многообразию различных доступных выводов из одних и тех же исходных данных. В случае неполных данных альтернативные состояния являются результатом доопределения области, т.е. результатом предположений о возможных значениях недостающих данных. К задачам преобразования относятся задачи, которые осуществляют изменения исходной или выведенной ранее информации о предметной области и являются следствием изменений либо реального мира, либо его модели. Большинство существующих ЭС решают задачи расширения, в которых нет ни изменений предметной области, ни активных агентов, преобразующих предметную область. Подобное ограничение неприемлемо при работе в динамических областях. В. По степени сложности структуры ЭС делят на поверхностные и глубинные. Поверхностные ЭС представляют знания об области экспертизы в виде правил (условие→ действие). Условие полного правила определяет образец некоторой ситуации, при соблюдении которой правило может быть выполнено. Поиск решения состоит в выполнении тех правил, образцы которых сопоставляются с текущими данными (текущей ситуации в РП). Глубинные ЭС, кроме возможностей поверхностных систем, обладают способностью при возникновении неизвестной ситуации определять с помощью некоторых общих принципов, справедливых для области экспертизы, какие действия следует выполнять. Г. По типу используемых методов и знаний ЭС делят на традиционные и гибридные. Традиционные ЭС используют в основном неформализованные методы инженерных знаний и неформализованные знания, полученные от экспертов. Гибридные ЭС используют и методы инженерии знаний, и формализованные методы, а также данные традиционного программирования и математики. Сейчас говорят о трех поколениях ЭС. К первому поколению следует относить статические поверхностные ЭС, ко второму — статические глубинные ЭС (иногда ко второму поколению относят гибридные ЭС), а к третьему — динамические ЭС (вероятно, они, как правило, будут глубинными и гибридными). Д. В последнее время выделяются два больших класса ЭС (существенно отличающихся по технологии их проектирования), которые условно можно назвать простыми и сложными ЭС. Простая ЭС может быть охарактеризована следующими основными показателями: поверхностная ЭС; традиционная ЭС (реже гибридная); выполненная на персональной ЭВМ. Сложная ЭС может быть охарактеризована следующими показателями: глубинная ЭС; гибридная ЭС; выполненная либо на символьной ЭВМ, либо на мощной универсальной ЭВМ, либо на интеллектуальной рабочей станции. Е. По стадиям жизненного цикла ЭС можно подразделить на такие, которые используются при проектировании технических и информационных объектов и применяются интегрированно с САD-system или САПР. На стадии технологического производства ЭС используются совместно с САМ- system как системы технологической подготовки производства, контроля и управления технологическим процессом. На стадии эксплуатации ЭС используются совместно с САЕ- system и обеспечивают интеллектуальную поддержку технического обслуживания сложных систем.
|