Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы метода сеток





Решение краевых задач в каждом конкретном случае является достаточно сложным процессом. Аналитическое решение даже одномерного уравнения теплопроводности, являющегося дифференциальным уравнением в частных производных параболического типа, трудноосуществимо, если иметь в виду зависимость теплофизических свойств от температуры, нелинейность граничных условий, т.е. зависимость их от температурного поля. Можно сказать, что аналитические методы оказываются практически непригодными для нахождения двух- и трехмерных температурных полей в областях сложной конфигурации. От этих недостатков свободны численные методы, в которых дифференциальные операторы заменяются алгебраическими, получающиеся матричные уравнения решаются на компьютерах с нахождением температурного поля в узловых точках конечно-разностной сетки.

Основная идея численных методов состоит в замене непрерывных производных по времени и координатам, входящих в дифференциальные уравнения, описывающие неравновесные процессы переноса, а также в краевые условия их приближенными значениями в отдельных точках (узлах) конечно-разностной сетки. В результате такой замены дифференциальная краевая задача сводится к системе алгебраических (матричных) уравнений относительно искомых параметров в узлах и ячейках сетки.

В общем случае расположение узлов сетки в исследуемой области может быть произвольным. Оно определяется особенностями решаемой задачи. На практике часто применяют сетку, равномерно покрывающую расчетную область. Такая сетка с постоянными расстояниями между ближайшими узлами (шагами сетки) называется регулярной. Фрагмент такой сетки применительно к одномерной нестационарной задаче показан на рис. 6.1. Узлы этой сетки определяются координатами

, (6.28)

hx
ht
Hx
k =1 . . .  
i= 1, 2, 3, …, N, N +1
Рис. 6.1. Фрагмент сетки

где N – число разбиений по толщине слоя Hx; hx, ht – соответственно шаги пространственной (по x) и временной (по t) сеток; i, k – номера узловых точек в направлении координат x, t.

 

Получим приближенные (аппроксимированные) формулы для первой и второй производных переносимой величины Т (t,x), входящей в дифференциальные уравнение теплопроводности. Для этого рассмотрим ее разложение в ряд Тейлора в направлении координаты x в окрестности точки x 0:

(6.29)

Ряд быстро убывает, и для нахождения приближенного значения первой производной можно ограничиться двумя членами разложения. Третий член разложения (6.29), являясь максимальным из отброшенных, характеризует в этом случае ошибку аппроксимации или ограничения. С точностью до ошибки аппроксимации можно записать первую производную в конечных разностях:

. (6.30)

Выбирая узловые точки справа и слева от рассматриваемой точки x 0 на расстоянии шага hx (x=x 0 + hx, x=x 0 – hx), можно получить из (6.30) формулы право- и левосторонней разностей:

, . (6.31)

Для нахождения ошибки аппроксимации полученных выражений воспользуемся рядом Тейлора (6.29), учитывая в нем три члена разложения. Подставим в этот ряд значения x=x 0 и x=x 0 +hx и вычтем из второго уравнения первое, в результате получим

, (6.32)

где – остаточный член ряда Тейлора, имеющий порядок шага сетки hx. В этом случае, имея в виду первую степень шага сетки в остаточном члене разложения, говорят, что формула (6.32) аппроксимации первой производной имеет первый порядок точности.

Используя нумерацию узловых точек, можно записать полученные формулы односторонних разностей для i -й узловой точки на k -м слое по времени:

. (6.33)

Среднее арифметическое значение право- и левосторонних разностей дает формулу центральной разности

. (6.34)

Вторая производная может быть найдена формально как производная от производной с применением формул (6.33):

. (6.35)

Отметим, что формулы центральной разности (6.34) и второй производной (6.35) имеют второй порядок точности, т. е. они на порядок точней формул односторонних разностей (6.33).

 







Дата добавления: 2015-09-07; просмотров: 772. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия