Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дисперсионный анализ





Что делать, когда мы хотим сравнить несколько выборок? Попарно сравнивать параметрическими или непараметрическими критериями? Очень быстро мы утонем в расчётах. Но, разумеется, наука уже знает способ нам помочь. Для сравнения трёх и более выборок используют дисперсионный анализ (ANOVA).

Дисперсионный анализ, основы которого были разработаны Фишером в 1920-1930 гг., позволяет устанавливать не только степень одновременного влияния на признак нескольких факторов и каждого в отдельности, но также их суммарное влияние в любых комбинациях и дополнительный эффект от сочетания разных факторов. Разумеется, и в этом случае остается масса неучтенных факторов, но, во-первых, методика позволяет оценить долю их влияния на общую изменчивость признака, а во-вторых, исследователь обычно имеет возможность выделить несколько ведущих факторов и исследовать именно их воздействие на изменчивость признаков.

Дисперсионный анализ позволяет решить множество задач, когда требуется изучить воздействие природных или искусственно создаваемых факторов на интересующий исследователя признак. Дисперсионный анализ принадлежит к числу довольно трудоемких биометрических методов, однако правильная организация опыта или сбора данных в природных условиях существенно облегчает вычисления.

Идея дисперсионного анализа заключается в разложении общей дисперсии случайной величины на независимые случайные слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение этих дисперсий позволяет оценить существенность влияния фактора на исследуемую величину. Таким образом, задача дисперсионного анализа состоит в том, чтобы выявить ту часть общей изменчивости признака, которая обусловлена воздействием учитываемых факторов, и оценить достоверность делаемого вывода.

Пусть, например, А – исследуемая величина, – среднее значение величины А, учитываемые факторы мы обозначим буквой х, неучитываемые – z, а все факторы вместе – буквой у (или припиской этих букв к соответствующим символам). Неучитываемые факторы составляют «шум» – помехи, мешающие выделить степень влияния учитываемых факторов. Отклонение А от при действии факторов х и z можно представить в виде суммы

(А- )=У=Х+Z,

где Х – отклонение, вызываемое фактором х, Z – отклонение, вызываемое фактором z, У – отклонение, вызываемое всеми факторами. Кроме того, предположим, что Х,У,Z – являются независимыми случайными величинами, обозначим дисперсии через s2Х, s2Y, s2Z, s2А. Тогда имеет место равенство:

s2А=s2Х+s2Z

Сравнивая дисперсии можно установить степень влияния факторов х и z на величину А, т.е. степень влияния учтенных и неучтенных факторов.

Непременным условием дисперсионного анализа является разбивка каждого учитываемого фактора не менее чем на две качественные или количественные градации. Если исследуется влияние одного фактора на исследуемую величину, то речь идет об однофакторном комплексе, если изучается влияние двух факторов – то о двухфакторном комплексе и т.д. Для проведения дисперсионного анализа обязательным условием является нормальное распределение и равные дисперсии совокупности случайных величин.

Для пояснения логической схемы дисперсионного анализа рассмотрим простейший произвольный пример. Предположим, что совокупности возрастающих доз удобрения на разных делянках имеют нормальное распределение и равные дисперсии. Имеется m таких совокупностей (разные делянки), из которых произведены выборки объемом n1,n2,…,nm. Обозначим выборку из i -ой совокупности через (хi1i2,…хin) - урожайность делянок. Тогда все выборки можно записать в виде таблицы, которая называется матрицей наблюдений.

Таблица 2.3







Дата добавления: 2015-09-07; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия