Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярное, нормальное уравнение прямой.





Найдем уравнение прямой в полярных координатах. Ее положение можно определить, указав расстояние р от полюса О до данной прямой и угол а между полярной осью ОР и осью l, проходящей через полюс О перпендикулярно данной прямой (см. рис.22).

Для любой точки М(г; j) на данной прямой имеем:

С другой стороны,

Следовательно,

(13)

Полученное уравнение (13) и есть уравнение прямой в полярных координатах.

Пусть прямая определяется заданием р и a (см. рис. 45). Рассмотрим прямоугольную систему координат Оху. Введем полярную систему, взяв О за полюс и Ох за полярную ось. Уравнение прямой можно записать в виде

т.е.

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: r cos j = x, r sin j = у. Следовательно, уравнение (13) прямой в прямоугольной системе координат примет вид

 

(14)

Уравнение (14) называется нормальным уравнением прямой.

 

Покажем, как привести уравнение (7) прямой к виду (14).

Умножим все члены уравнения (7) на некоторый множитель . Получим l Ах + l Ву + l С = 0. Это уравнение должно обратиться в уравнение (14). Следовательно, должны выполняться равенства:

l А = cos a, l В = sin a, l С = - р. Из первых двух равенств находим l 2 А2 + l 2 В2 = cos2 a + sin2 a, т. е. . Множитель l называется нормирующим множителем. Согласно третьему равенству

l С = - р знак нормирующего множителя противоположен знаку свободного члена С общего уравнения прямой.







Дата добавления: 2015-09-07; просмотров: 964. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия