Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярное, нормальное уравнение прямой.





Найдем уравнение прямой в полярных координатах. Ее положение можно определить, указав расстояние р от полюса О до данной прямой и угол а между полярной осью ОР и осью l, проходящей через полюс О перпендикулярно данной прямой (см. рис.22).

Для любой точки М(г; j) на данной прямой имеем:

С другой стороны,

Следовательно,

(13)

Полученное уравнение (13) и есть уравнение прямой в полярных координатах.

Пусть прямая определяется заданием р и a (см. рис. 45). Рассмотрим прямоугольную систему координат Оху. Введем полярную систему, взяв О за полюс и Ох за полярную ось. Уравнение прямой можно записать в виде

т.е.

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: r cos j = x, r sin j = у. Следовательно, уравнение (13) прямой в прямоугольной системе координат примет вид

 

(14)

Уравнение (14) называется нормальным уравнением прямой.

 

Покажем, как привести уравнение (7) прямой к виду (14).

Умножим все члены уравнения (7) на некоторый множитель . Получим l Ах + l Ву + l С = 0. Это уравнение должно обратиться в уравнение (14). Следовательно, должны выполняться равенства:

l А = cos a, l В = sin a, l С = - р. Из первых двух равенств находим l 2 А2 + l 2 В2 = cos2 a + sin2 a, т. е. . Множитель l называется нормирующим множителем. Согласно третьему равенству

l С = - р знак нормирующего множителя противоположен знаку свободного члена С общего уравнения прямой.







Дата добавления: 2015-09-07; просмотров: 964. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия