Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение однородной системы уравнений. Общее решение системы уравнений.





(0,0,….,0)- для неё справедливо

……………………………………………….. (5`)

Свойства множества решений однородной системы уравнений выражены в предложениях. Предложение 1. Если столбцы –решения однородной системы, то их сумма удовлетворяет решение. Произведение решения на любое число тоже будет решением.

-решение.

, где

Предожение 2.

Если ранг матрицы однородной системы =r, то система имеет (n-r) –линейно-независимое решений.

Придадим параметрические неизвестные (n-r) значений, т.е.

……………………………………………

 

= = (10)

(10)-нормальная фундаментальная система решени. Любая система из (n-r) –линейно-независимых решений называется фундаментальным решением системы.Предложение 5. Пусть ( -произвольное фундаментальное решение однородной системы, тогда любое решение x представляет собой линейную комбинацию решений (. Док-во: составим матрицу X, столбцы которой являются решением X=(, т.к. в ней есть лиейно-независимые столбцы. Rg (n-r), т.к. в ней есть (n-r) линейно-независимый столбцов, или Rg (n-r), т.к. выржается через параметрические неизвестные, причем коэффициент одинаковый для каждого столбца. фундаментальая система решений однородной системы

x= (11), т.е.

= +…+ (11)

Это решение(каковыми бы не были числа ) столбец x определяется (11) и является решением.

 

47.Произведение матриц. Обратная матрица. Пусть a=()= ; b= ; a*b-назвается число суммы произведений с одинаковыми номерами. Пусть матрица А (m*n) и матрица В (n*p).Матрица такова, что длина строки=высоте столбца. Умножим каждую строку a на каждый столбец b. Получим m*p произведение. Запишем мат. С (m*p), каждый столбец мат. С состоит произведений строк a на b. Любая строка С состоит из произведения строк a на имеющий один и тот же номер на любой b. , где i=1,…m, 1,…p. (1)Определение. Матрица С, которая выражается через элементы мат. А и В по формуле(1) назовем произведением Аи В и обозначается А*В.

Предложение 1. j- столбец мат. А*В, есть лин. комбинация столбца мат. А с коэффициентами j-го столбца мат. В. i-строк мат. А*В, есть лин. комбинация строк мат. В с коэффициентами i-ой строки мат. А. Обозначим А(, B( и С(. Отметим, что столбцы мат. А и А*В имеют одинаковую высоту, поскольку для получения последовательно умножается строки А на

Свойства умножения матрицы: А*В≠В*А-некоммуникативно, если же А*В=В*А- матрицы называюся перестановочными.

Свойства операций: Предложение 2.-умножение матриц ассоциативно, т.е. если определены А*В и (А*В)*С, то определены В*С и А*(В*С); (А*В)*С=А*(В*С)

Предложение 3. -умножене матриц дистрибутивно, если А*(В+С)-имеет смысл. А*(В+С)=А*В+А*С;(А+В)*С=А*С+В*С. Если произведение матриц А*В имеет смысл, то Предложение 4. Ранг произведение матриц не превосходит ранга сомножетелей. Rg(A*B) ≤RgA; Rg(A*B)≤ RgB; D=(A\A*B), очевидно, что Rg(A*B) ≤RgD. Предложение 5. Если определено произведение матриц А*В, то определено и произведение ВТТ; (А*В)ТТТ

Следствие. (А*В*С)ТТТТ; Док-во: (А*В)Т= СТ*(А*В)Т= АТТТ. Доказано.

Обратная матрица. Матрица X, удовлетворяющая вместе с матрицей А условие X*A=A*X= , где -единичная матрица некоторого порядка n. Поскольку А и А-1-перестановочные, то ои должны быть квадратными матрицами порядка n.Из предложения 2 следует, что Rg , RgA=n.Поэтому А имет обратную матрицу, тогда когда её определитель не равен 0. Это необходимое и достаточное условие существования обратной матрицы и только одну. Для каждой мат. А, где АX=E, при , должен удовлетворять условию, ;

(4)

………………………………………

По правилу Крамера определиель этой системы отличен от нуля и система имеет одно решение. Отсюда следует, что каждый столбец системы определен единственным образом. Существует матрица Y, где X*Y=E; AX*Y=AE; EY=AE; Y=A. Этот способ позволяет найти обратную матрицу.

, где -детерминант.

(5)-формула для вычисления обратной матрицы.;A*X=E;X=E*A-1;(A-1)-1=A (6);(AB)-1=B-1A-1(7)

(AT)-1=(A-1)T(8)

 

48. Элементарные преобразования матриц. Каждое элементарное преобразование строк матрицы А размером (m*n)равносильно умножению матрицы А на некоторую квадратную матрицу слева размером m.Рассмотрим матрицу S1 которая получается из Еп перестановкой i-ой и j-ой строки. S2 —матрица, получаемая из единичной матрицы (единицы заменяем на α ). Из предложения 1 следует, что при умножении А на S2 слева i строка умножается на а.S2A = αА; Обозначим через S3

 
S3(A)=A; Заметим, что ||S1||=-1; ||S2||=α;||S3||=||A|| Для матрицы элементарных преобразований имеем det|SA| = detS * detA

Предложение. Для любых квадратных матриц А и В одного порядка ||A*B||=||A||*||B||. Если det А=0, то из утверждения вытекает, что ||A*B|| = 0 -из оценки ранга матрицы. Если detA ≠0, то существует А-1. А-1 может быть превращена в единичную матрицу при помощи элементарных преобразований. S1 *... * SpA-1 = E; S1 *... * Sp = EA = A; ||A*B|| = ||S1*S2*...*Sp|*B|=|S1|*|S2|*...*|Sp|*|B| = ||A||*||B||

 

 

49. Элементарные преобразования как умножение матриц. Пусть даны две прямоугольные матрицы A и B размерности и соответственно:

Тогда, если число столбцов матрицы A равно числу строк матрицы B, то есть n = p, то определена матрица C размерностью называемая их произведением: где: Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что форма матриц согласована. В частности, умножение всегда выполнимо, если оба сомножителя — квадратные матрицы одного и того же порядка. Следует заметить, что из существования произведения AB вовсе не следует существование произведения BA.

Свойства:Сочетательное свойство: Распределительное свойство: Произведение матрицы на единичную матрицу Е подходящего порядка равно самой матрице Произведение матрицы на нулевую матрицу 0 подходящей размерности равно нулевой матрице: Если А и В — квадратные одного и того же порядка, то произведение матриц обладает ещё рядом свойств. Умножение матриц в целом некоммутативно: Если , то матрицы А и В называются перестановочными или коммутирующими между собой. Определитель и след произведения не зависят от порядка умножения матриц:

 

50. определитель произведения матриц. Для любых двух квадратных матриц одного порядка Док-во. Пусть матрица А невырождена. Разложим ее в произведение элементарных матриц. Тогда .последовательно применяя формулу , получим теперь из формулы следует утверждение. Если матрица А вырождена,то по предложению(если хоть одна из матриц А и В вырождена, то произведение АВ-вырожденная матрица)произведение АВ также вырождена и detАВ равен нулю так же,как и detA detB

 







Дата добавления: 2015-09-07; просмотров: 608. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия