Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение правильных многоугольников по данной стороне





Построение квадрата по данной его стороне L (рисунок 34). На произвольной прямой откладывают отрезок AB, равный стороне квадрата L. Из любого конца отрезка, например из точки A, восстанавливают перпендикуляр и на нем откладывают отрезок AD = L. Затем из точек B и D как из центров проводят дуги радиусом R = L и на пересечении их отмечают точку С. Соединив прямыми точку C с точками B и D, получают квадрат с заданной стороной L.

Рисунок 34

 

Построение правильного шестиугольника по данной его сторонеL (рисунок 35). Известно, что сторона правильного шестиугольника равна радиусу окружности, описанной вокруг него. Поэтому, построив на произвольной прямой отрезок AB=L (рисунок 35, а), из концов его как из центров проводят две дуги радиусом R = L до взаимного пересечения их в точке О. Приняв точку О за центр, проводят окружность тем же радиусом R=L и делят ее на шесть равных частей. Точки деления являются вершинами правильного шестиугольника со стороной L (рисунок 35, б).

а б

Рисунок 35

 

Построение правильного шестиугольника с помощью линейки и угольника с углами 60 и 30° показано на рисунке 36.

 

Рисунок 36

 

Приближенный способ построения правильных многоугольников данной сторонеAB (рисунок 37).Изложенный ниже способ заключается в том, что правильный многоугольник строят как вписанный в окружность. Из концов отрезка АВ радиусом, равным этому отрезку, проводят две дуги до взаимного пересечения их в точках О и О6. Из точек A и В к отрезку AB восстанавливают перпендикуляры, и на пересечении их с проведенными дугами получают две вершины квадрата (на рисунке 37 отмечена одна из них). Центр O4 окружности, описанной около квадрата, расположен в точке пересечения диагонали квадрата с вертикальной прямой OO6. Для построения вписанного пятиугольника отрезок O4O6 делят пополам в точке O5 и из нее как из центра описывают окружность радиусом, равным отрезку O5A. Сторона AB пять раз уложится на этой окружности. Центры окружностей, в которые сторона AB укладывается 8, 10, 12 и т. д. раз, расположены в точках пересечения прямой OO6 с окружностями соответственно радиусов O4A, О5А, О6А и т. д. Разделив пополам отрезки O6O8, O8O10, O10O12 и т.д., получают точки O7, O9, O11 и т. д., являющиеся центрами окружностей, в которые сторона AB укладывается 7, 9, 11 и т. д. раз. Радиусы этих окружностей равны O7A, O9A, O11A и т.д.

 

Рисунок 37

 

 







Дата добавления: 2015-10-01; просмотров: 1116. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия