Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм Брезенхема





Будем рассуждать подобно алгоритму Брезенхема для отрезков (с соответствующими поправками на 4-й октант) [17]. Из двух возможных пикселов в 4-м октанте (соответствующих вертикальному и диагональному смещениям, которые обозначаются аналогично прежним s и d, см. рис. 4.10) будем выбирать тот, расстояние от окружности до которого меньше.

Рис. 4.8. Расстояния до окружности.

Для того чтобы выбрать один из двух возможных пикселей, будем сравнивать расстояния от них до окружности: где расстояние меньше - тот пиксел и будет искомым. В примере на рис. 4.8 сравниваются расстояния от точек S(xs, ys) и D(xd, yd) до окружности с радиусом R. Из евклидовой метрики получаем:

Но вычисление квадратного корня - вычислительно трудоемкая операция, поэтому при достаточно больших R мы будем заменять сравнение расстояний сравнением приближенных значений их квадратов (см. рис. 4.9):

Рис. 4.9. Приближенное сравнение расстояний.

Уменьшим два слагаемых на приблизительно одинаковые величины:

заменим на ,

заменим на

получим

Таким образом, приближенно

  1. D ближе к окружности, чем S

  1. S ближе к окружности, чем D

Рис. 4.10. Алгоритм Брезенхема для окружности

Пусть (x, y) - текущий пиксель. Обозначим

Тогда из двух возможных смещений d и s выберем.

  1. , т.е. (x+1, y + 1) ближе к окружности, чем (x, y+1):

d: Переходим в (x + 1, y + 1) и придаем соответствующие приращения F, ΔF(s), ΔF(d):

F = F +ΔF(d); ΔF(s) = ΔF(s)+4; ΔF(d) = ΔF(d)+8.
  1. , т.е. (x, y+1) ближе к окружности, чем (x + 1, y+1):

s: Переходим в (x, y + 1) и придаем соответствующие приращения F, ΔF(s), ΔF(d):

F = F +ΔF(s); ΔF(s) = ΔF(s)+4; ΔF(d) = ΔF(d)+4.

Если мы начинаем из (-R, 0), то начальные значения будут следующими:

Легко видеть, что в алгоритме все величины, связанные с F, кроме F начального, будут кратны 2. Но, если мы поделим все эти величины на 2 (в дальнейшем значения всех величин уже понимаются в этом смысле), то . Так как приращения F могут быть только целочисленными, то , где ; т.е. если отнять от всех значений, то знак F не изменится для всех T, кроме T = 0. Для того чтобы результат сравнения остался прежним, будем считать, что F = 0 теперь соответствует смещению s.

x = -r; y = 0; F = 1-r;ΔFs = 3;ΔFd = 5-2*r; while(x + y < 0){ plot8(x, y); if(F > 0) { // d: Диагональное смещение F += ΔFd; x++; y++; ΔFs += 2; ΔFd += 4; } else { // s: Вертикальное смещение F += ΔFs; y++; ΔFs += 2; ΔFd += 2; }}

Листинг 4.5. Алгоритм Брезенхема для окружности

Размерность вычислений этого алгоритма (т.е. отношение максимальных модулей значений величин, с которыми он оперирует к модулям исходных данных (в данном случае R)) равна 2.







Дата добавления: 2015-10-01; просмотров: 542. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия