Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм Брезенхема





Будем рассуждать подобно алгоритму Брезенхема для отрезков (с соответствующими поправками на 4-й октант) [17]. Из двух возможных пикселов в 4-м октанте (соответствующих вертикальному и диагональному смещениям, которые обозначаются аналогично прежним s и d, см. рис. 4.10) будем выбирать тот, расстояние от окружности до которого меньше.

Рис. 4.8. Расстояния до окружности.

Для того чтобы выбрать один из двух возможных пикселей, будем сравнивать расстояния от них до окружности: где расстояние меньше - тот пиксел и будет искомым. В примере на рис. 4.8 сравниваются расстояния от точек S(xs, ys) и D(xd, yd) до окружности с радиусом R. Из евклидовой метрики получаем:

Но вычисление квадратного корня - вычислительно трудоемкая операция, поэтому при достаточно больших R мы будем заменять сравнение расстояний сравнением приближенных значений их квадратов (см. рис. 4.9):

Рис. 4.9. Приближенное сравнение расстояний.

Уменьшим два слагаемых на приблизительно одинаковые величины:

заменим на ,

заменим на

получим

Таким образом, приближенно

  1. D ближе к окружности, чем S

  1. S ближе к окружности, чем D

Рис. 4.10. Алгоритм Брезенхема для окружности

Пусть (x, y) - текущий пиксель. Обозначим

Тогда из двух возможных смещений d и s выберем.

  1. , т.е. (x+1, y + 1) ближе к окружности, чем (x, y+1):

d: Переходим в (x + 1, y + 1) и придаем соответствующие приращения F, ΔF(s), ΔF(d):

F = F +ΔF(d); ΔF(s) = ΔF(s)+4; ΔF(d) = ΔF(d)+8.
  1. , т.е. (x, y+1) ближе к окружности, чем (x + 1, y+1):

s: Переходим в (x, y + 1) и придаем соответствующие приращения F, ΔF(s), ΔF(d):

F = F +ΔF(s); ΔF(s) = ΔF(s)+4; ΔF(d) = ΔF(d)+4.

Если мы начинаем из (-R, 0), то начальные значения будут следующими:

Легко видеть, что в алгоритме все величины, связанные с F, кроме F начального, будут кратны 2. Но, если мы поделим все эти величины на 2 (в дальнейшем значения всех величин уже понимаются в этом смысле), то . Так как приращения F могут быть только целочисленными, то , где ; т.е. если отнять от всех значений, то знак F не изменится для всех T, кроме T = 0. Для того чтобы результат сравнения остался прежним, будем считать, что F = 0 теперь соответствует смещению s.

x = -r; y = 0; F = 1-r;ΔFs = 3;ΔFd = 5-2*r; while(x + y < 0){ plot8(x, y); if(F > 0) { // d: Диагональное смещение F += ΔFd; x++; y++; ΔFs += 2; ΔFd += 4; } else { // s: Вертикальное смещение F += ΔFs; y++; ΔFs += 2; ΔFd += 2; }}

Листинг 4.5. Алгоритм Брезенхема для окружности

Размерность вычислений этого алгоритма (т.е. отношение максимальных модулей значений величин, с которыми он оперирует к модулям исходных данных (в данном случае R)) равна 2.







Дата добавления: 2015-10-01; просмотров: 542. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия