Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы координат: мировая, объектная, наблюдателя и экранная





Одной из распространенных задач компьютерной графики является изображение двумерных графиков в некоторой системе координат. Эти графики предназначены для отображения зависимости между переменными, заданной с помощью функции. Например, во второй главе настоящего курса приведен ряд графиков, характеризующих восприятие света глазом человека. Чтобы получить такой график, прикладная программа должна описать различные выходные примитивы (точки, линии, цепочки символов), указав их местоположение и размеры в прямоугольной системе координат. Единицы измерения, в которых задаются эти объекты, зависят от их природы: изменение температуры, например, можно отображать в градусах за час, перемещение тела в пространстве - в километрах в секунду, и т. д. Эти прикладные (или ориентированные на пользователя) координаты позволяют задавать объекты в двумерном или трехмерном мире пользователя, и их принято называть мировыми координатами.

Изображение трехмерных объектов сопряжено с целым рядом задач. Прежде всего надо помнить, что изображение является плоским, поэтому надо добиться адекватной передачи визуальных свойств предметов, дать достаточно наглядное представление о глубине. В дальнейшем группы трехмерных объектов, предназначенных для изображения, будем называть пространственной сценой, а ее двумерное изображение - образом.

Рис. 5.3. Объектная система координат и система координат наблюдателя

Как и в случае с двумерными объектами, первым шагом построения является ввод информации об объектах. Сцена занимает какое-то определенное место в пространстве, а ее описание привязывается к трехмерной декартовой системе координат, связанной с нею, - объектной координатной системе. Координаты объектов, составляющих сцену, определяются на основе их реальных размеров и взаимного расположения. В зависимости от точки, из которой рассматривается сцена, можно получить множество различных ее образов. Если построено достаточно много таких образов, то по ним можно восстановить объемную структуру предмета. Выбор точки и направления зрения тоже можно описать математически, введя декартову систему координат наблюдателя, начало которой находится в точке обзора, а одна из осей совпадает с направлением зрения (рис. 5.3). Переход от объектных координат к координатам наблюдателя математически реализуется так, как это было описано в третьей главе. На этом этапе преобразований сохраняются реальные размеры объектов.

Видимый образ формируется на некоторой плоскости, которую в дальнейшем будем называть картинной плоскостью. Способы преобразования трехмерного объекта в двумерный образ (проекции) могут быть различными. Так или иначе, но полученный образ также должен быть описан в некоторой двумерной системе координат. В зависимости от способа его получения реальные размеры образа также могут быть различны. Различные виды проецирования будут подробно рассмотрены в последующих главах.

Поскольку нашей конечной целью является получение изображения на экране, то перенесение образа сопровождается изменением масштаба в соответствии с размерами экрана. Обычно началом координат в системе координат образа считается левый нижний угол листа с изображением. На экране дисплея начало координат традиционно находится в левом верхнем углу. Отображение рисунка с картинной плоскости на экран должно производиться с минимальным искажением пропорций, что само по себе вносит ограничение на область экрана, занимаемую рисунком. Изменение масштаба должно осуществляться с сохранением пропорций области (рис. 5.4).

 

Рис. 5.4. Картинная плоскость и экран

Объекты в системе координат картинной плоскости задаются в каких- либо единицах измерения, причем масштаб одинаков по обеим осям координат. На экране единицей измерения является пиксель, который следует рассматривать как прямоугольный, поэтому масштабы по горизонтальной и вертикальной осям могут быть различны, что необходимо учитывать при задании коэффициентов масштабирования.

Рассмотрим ситуацию, когда изображение занимает на картинной плоскости прямоугольную область . При отображении рисунка на экран каждая точка исходного прямоугольника с координатами перейдет в некоторую точку с целочисленными координатами . Введем обозначения:

(предполагается, что изображение займет на экране прямоугольник ). Определим преобразование координат образа в экранные координаты формулами

Ясно, что при таком отображении прямоугольная область образа в точности перейдет в соответствующий экранный прямоугольник, как показано на рисунке. Теперь надо определить сам экранный прямоугольник так, чтобы его пропорции соответствовали прямоугольнику образа, т.е.

где - горизонтальный и вертикальный размер одного пикселя. Эти параметры легко установить, зная размеры экрана и разрешение. Отсюда получаем

Теперь достаточно задать на экране начало отсчета и горизонтальный размер окна, а остальные параметры легко вычисляются.







Дата добавления: 2015-10-01; просмотров: 586. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия