Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изображение эллипсов





Прежде всего отметим, что у эллипса, в отличие от окружности, всего 2 оси симметрии, поэтому по точкам придется строить уже 2 октанта (см. рис. 4.11).

Рис. 4.11. Изображение эллипса

Построение по неявной функции

Будем рассуждать подобно алгоритму Брезенхема для окружностей.

Неявная функция, задающая эллипс, имеет вид

Введем f(x, y) = b2x2 + a2y2 - a2b2.

Аналогично алгоритму для окружности можно сравнивать f для двух возможных вариантов. Подробный вывод оставляем читателю в качестве упражнения.

Построение путем сжатия окружности

Воспользуемся тем, что эллипс с параметрами a, b (пусть a > b) получается из окружности радиуса a сжатием по оси y в a/b раз. Построим алгоритм, который является некой комбинацией алгоритмов Брезенхема для окружности и для отрезка (см. рис. 4.12).

Рис. 4.12. Построение эллипса путем сжатия окружности

Рис. 4.13. Смешанная связность

Начнем из точки (a, 0) на окружности и из точки (0, 0) на отрезке. Будем строить эллипс точно так же, как окружность, но смещать текущую точку по y только в том случае, когда такое смещение происходит в текущем шаге уже для отрезка, т.е. построение отрезка как раз и является реализацией сжатия в a/b раз (точнее, его дискретной аппроксимацией). Этот алгоритм тоже имеет недостаток: возможная смешанная связность полученной линии (см. рис. 4.13).








Дата добавления: 2015-10-01; просмотров: 490. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия