Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отсечение выпуклым многоугольником





Во многих задачах компьютерной графики часто приходится иметь дело с отсечением не только простым прямоугольным окном, но и окном достаточно произвольной геометрии. В частности, такие задачи могут возникнуть при использовании перспективных проекций трехмерных сцен, но не только в этих случаях. Поэтому актуальной является задача отсечения выпуклым многоугольником. Ясно, что простой анализ с помощью кодов Сазерленда-Коэна в такой ситуации неприменим. Здесь нужен надежный и достаточно эффективный алгоритм нахождения точки пересечения двух произвольно ориентированных отрезков, а также алгоритм определения местоположения точки относительно многоугольника (внутри, снаружи или на границе).

Рассмотрим задачу о пересечении отрезка с концами с выпуклым многоугольником, заданным списком ребер. Ребро может быть задано в виде пары точек из множества вершин многоугольника (рис. 6.7). То обстоятельство, что многоугольник выпуклый, является очень существенным: это позволяет использовать достаточно простой алгоритм, использующий внутренние нормали к его сторонам. Под внутренней нормалью понимается вектор, перпендикулярный стороне и направленный внутрь многоугольника. Как и в предыдущем алгоритме, воспользуемся параметрическим уравнением прямой, проходящей через концы отрезка: . Если при некотором значении параметра эта прямая пересекается с прямой, проходящей через точки , то вектор, соединяющий произвольную точку ребра с точкой , будет перпендикулярен вектору нормали. Следовательно, скалярное произведение векторов и будет равно нулю. Отсюда путем несложных выкладок получаем

.

Рис. 6.7. Пересечение отрезка многоугольником

Конечно, использование этой формулы предполагает, что , т.е. что отрезок не параллелен стороне многоугольника, но этот случай рассматривается отдельно. Найденная точка принадлежит отрезку при условии . Условие принадлежности этой точки ребру многоугольника также можно выразить через скалярное произведение, так как векторы и в этом случае должны быть одинаково направленными, т.е. .

Для каждого отрезка возможны три случая взаимного расположения с многоугольником:

  • точек пересечения нет;
  • существует одна точка пересечения;
  • существуют две точки пересечения.

В каждом из этих вариантов для нахождения пересечения отрезка с окном необходимо уметь определять принадлежность точки выпуклому многоугольнику. Из рис. 6.7 видно, что если для любой точки , принадлежащей многоугольнику (или его границе), и произвольной точки ребра построить вектор , то выполняется условие , поскольку угол между векторами не может превышать 90°. Таким образом, если данное условие выполняется для всех ребер многоугольника, то точка является внутренней.

Таким образом, алгоритм отсечения отрезка начинается с анализа расположения концов отрезка по отношению к окну. Если обе точки лежат внутри окна, то отрезок полностью видимый, и дальнейший поиск прекращается. Если только одна из точек лежит внутри окна, то имеет место случай II, и предстоит найти одну точку пересечения. И, наконец, если обе точки лежат вне окна, то существуют либо две точки пересечения (отрезок пересекает две границы окна), либо ни одной (отрезок полностью невидим). Впрочем, две точки пересечения могут совпадать (если отрезок проходит через вершину многоугольника), но этот случай в дополнительном анализе не нуждается.

Далее выполняется цикл по всем ребрам многоугольника с целью нахождения точек пересечения. Для каждого ребра перед началом поиска пересечения необходимо проверить, не параллельно ли оно с отрезком. Если это так, то можно вычислить расстояние от одного из концов отрезка до прямой, проходящей через ребро . При отрезок лежит на прямой, и остается определить взаимное расположение концов отрезка и концов ребра, что можно сделать простым покоординатным сравнением. При отрезок не имеет общих точек с данным ребром.







Дата добавления: 2015-10-01; просмотров: 505. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия