Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кривые Гильберта





Рекурсия может быть использована для получения линейного рисунка, известного под названием кривая Гильберта. Кривая Гильберта основана на изображении буквы П, вычерченной в виде трех сторон квадрата, как показано на рис. 24.3a. Существуют кривые Гильберта порядков 1, 2,..., обозначаемые как H1, H2,... На рис. 24.3b изображена кривая порядка H2, в которой некоторые отрезки прямых линий вычерчены в виде толстых линий. Это так называемые связки (в действительности связки должны иметь одинаковую толщину с другими отрезками, здесь же они показаны утолщенными единственно с целью демонстрации способа получения H2 из H1).

 

Видно, что H2 можно рассматривать как большую букву П, четыре части которой заменены меньшими по размеру буквами П. Эти меньшие буквы П соединены тремя связками. Каждая сторона меньшей буквы П имеет ту же длину, что и связка, они в три раза меньше стороны квадрата, в который вписывается H2. Применим ту же процедуру к каждой из четырех букв П, составляющих H2, то есть каждую букву П в H2 заменим меньшей H2, одновременно уменьшим длину связок так, чтобы их длины стали равными длине элементарного отрезка прямой линии, которые содержатся в трех малых фигурах H2. Таким образом мы получим фигуру H3, показанную на рис. 24.3с.

Теперь все элементарные отрезки в семь раз меньше, чем длина сторон квадрата, в который вписывается фигура H3. Отсюда получаем, что коэффициенты уменьшения для этих элементарных отрезков в фигурах H1, H2, H3,... образуют ряд чисел: 1, 3, 7,..., то есть в общем случае коэффициент уменьшения для фигуры Hn может быть вычислен по формуле: 2n - 1.

Заметим, что связки в фигуре H2 вычерчиваются в тех же направлениях, как и три отрезка, образующие букву П в фигуре H1. При желании эти последние отрезки прямых линий можно рассматривать как связки, соединяющие четыре точки, которые в свою очередь можно принять за кривую Гильберта нулевого порядка.

В нашей программе HILBERT для построения кривых Гильберта используется рекурсивная функция hilbert со следующими аргументами: координаты точек A, B, C (см. рис. 24.4); горизонтальные и вертикальные компоненты двух направленных связок, причем одна лежит на отрезке AB, а другая — на AC. Они задаются в виде векторов, то есть как пара чисел (dx, dy), где переменные dx и dy могут принимать положительные, нулевые или отрицательные значения, в зависимости от относительного положения точек A, B и C. Эти два вектора в программе обозначаются как dAB и dAC; n — глубина рекурсии, для n = 0 функция ничего не будет делать.

 

 

Будем считать, что рис. 24.4 является вариацией изображения буквы П (повернутой на угол 30o против часовой стрелки), позиция которой целиком определяется тремя заданными точками A, B и C. Будем считать, что точка A является начальной точкой, а точка B — конечной. Основной причиной задания точки C является необходимость указания, с какой стороны от направленного отрезка AB должна лежать вычерчиваемая кривая. Оба заданных вектора связок dAB и dAC отмечены на рисунке в виде связок в трех местах, а именно как отрезки DF, GH и IK. Три заданные точки A, B, C и два заданных вектора dAB и dAC позволяют определить позиции точек D, E, F, G, H, I, J, K на рисунке. (Мы не будем требовать, чтобы угол CAB был прямым углом или чтобы длина отрезка AB совпадала с длиной отрезка AC, поэтому вместо квадрата каждая буква П может иметь форму произвольного параллелограмма). В общем случае пунктирные линии, показанные на рис. 24.4, фактически не вычерчиваются. Вместо этого мы будем выполнять рекурсивное обращение к нашей функции hilbert для каждой из четырех точечных букв П на рисунке. Для вычерчивания на экране трех отрезков связок DF, GH и IK будем обращаться к нашей функции draw.

На рис. 24.5 представлен результат работы программы.

 

 







Дата добавления: 2015-10-01; просмотров: 792. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.016 сек.) русская версия | украинская версия