Критическое напряжение О2 в митохондриях.
Напряжение О2 в клетках в норме имеет проме-
ГЛАВА 23. ТКАНЕВОЕ ДЫХАНИЕ 633 жуточное значение между напряжением О2 в артериальной крови и минимальным значением, которое в органах (или частях органов) с высокими потребностями в кислороде составляет около 1 мм рт. ст. (133,3 Па). Для нормального протекания окислительных процессов необходимо, чтобы напряжение О2 в области митохондрий превосходило 0,1-1 мм рт.ст. (13,3-133,3 Па). Эта величина называется критическим напряжением О2 в митохондриях [15, 22, 39]. Если напряжение О2 в участках цитоплазмы, непосредственно граничащих с митохондриями, падает ниже критического, то полное окисление восстановленной цитохромоксидазы становится невозможным, перенос водорода и электронов в дыхательной цепи подавляется и в результате не может поддерживаться нормальная скорость энергетического обмена. Таким образом, важнейшим показателем, характеризующим снабжение тканей кислородом, служит напряжение О2 в клетках. Внедрение в практику исследований полярографических методов (с. 593) позволило непосредствен-
но измерять напряжение О2 в отдельных клетках при помощи микроэлектродов. Напряжение О2 в клетках, расположенных близко к поверхности, определяют при помощи миниатюрных платиновых микроэлектродов, введение которых в ткань не приводит к нарушению в ней микроциркуляции. Для измерения напряжения О2 в более глубинно расположенных клетках используют игловидные электроды с диаметром кончика в пределах 0,5-5 мкм (рис. 23.3, Б). Оба этих метода используют в основном в опытах на животных. В то же время они были успешно применены и при исследовании больных для определения напряжения О2 в легкодоступных органах. Так, подробно изучено распределение напряжения О2 в покое и при нагрузке в пораженных мышцах при ряде мышечных заболеваний и состояний, сопровождающихся нарушением мышечного кровотока. При нейрохирургических операциях с помощью поверхностных микроэлектродов получены важные данные, касающиеся поступления кислорода к тем или иным участкам головного мозга. Результаты подобного исследования представлены на рис. 23.4 в виде гистограмм парциального давления О2 в поверхностных клетках различных участков коры головного мозга в условиях артериальной нормоксии и артериальной гипоксии [28]. В большинстве случаев, однако, снабжение кислородом какого-либо органа у человека рассчитывают по результатам непосредственного измерения важнейших показателей, влияющих на поступление О2,-скорости кровотока, напряжения и концентрации дыхательных газов, pH артериальной крови; на основании этих данных анализируют газоообмен в интересующем участке ткани. Распределение напряжения О2 в ткани мозга. Наибольший интерес представляет распределение напряжения О2 в ткани головного мозга и в миокарде, поскольку при недостаточном поступлении кислорода к любому из этих двух органов может наступить смерть. Среднее распределение напряжения О2 в цилиндрическом участке коры головного мозга, снабжаемом одним капилляром, представлено на рис. 23.5 (при этом потребление О2 принимается равным 9· 10−2 млт−1-мин−1, а кровоток0,8 мл · г −1 · мин −1 ). При прохождении крови через капилляр напряжение О2 в нем падает с 90 ммрт. ст. (12,0 кПа) примерно до 28 ммрт. ст. (3,7 кПа). Эти изменения соответствуют эффективной кривой диссоциации оксигемоглобина (с. 610). Перпендикулярно продольному градиенту напряжения направлен радиальный градиент напряжения с разницей между напряжением О2 в крови и в периферических участках цилиндра около 26 мм рт. ст. (3,5 кПа). Хуже всего снабжаются кислородом клетки, расположенные у венозного конца цилиндра; по 634 ЧАСТЬ VI. ДЫХАНИЕ
расчетам напряжение О2 в области этих клеток составляет 1-2 мм рт. ст. (133-266 Па). Вычисленные величины напряжения О2 хорошо согласуются с данными прямых измерений у животных [27] в аналогичных условиях (рис. 23.3. A и 23.4) и свидетельствуют о том, что ткань мозга отнюдь не так хорошо снабжается кислородом, как принято считать. Эти расчеты позволяют понять, почему уменьшение мозгового кровотока столь легко приводит к кислородному голоданию нейронов, расположенных в наиболее плохо снабжаемых кровью участках. В результате функция таких нейронов быстро нарушается, что во многих случаях приводит к частичной или полной потере сознания. Распределение напряжения О2 в миокарде. Сердечная мышца отличается от большинства других тканей тем, что снабжение ее кислородом носит периодический характер. В ходе сердечного цикла изменяют- ся как потребность миокарда в энергии, так и его кровоснабжение. При систоле в результате повышенного интрамурального давления кровоток в бассейне левой коронарной артерии снижается и может на короткое время полностью прекратиться во внутренних слоях миокарда левого желудочка (с. 495). В результате снабжение миокарда кислородом претерпевает периодические колебания: в систоле оно минимально, а в диастоле максимально. В то же время потребность клеток миокарда в энергии изменяется противоположным образом: она возрастает во время фазы сокращения и снижается во время фазы расслабления. Существуют два механизма, полностью удовлетворяющие в нормальных условиях потребность миокарда в энергии, несмотря на снижение поступления О2 во время систолы. Один из них заклю-
ГЛАВА 23. ТКАНЕВОЕ ДЫХАНИЕ 635 чается в том, что в тех клетках, где во время сокращения PO2 падает ниже примерно 10 мм рт. ст. (1,3 кПа), миоглобин играет роль кратковременного депо О2 (см. выше). Второй механизм состоит в том, что временно повышенная потребность миокарда в энергии удовлетворяется за счет энергетических резервов (АТФ и креатинфосфата). Во время систолы благодаря значительному повышению кровоснабжения миокарда миоглобин снова полностью насыщается кислородом, а клеточные запасы энергии восполняются [26]. Изменения в снабжении миокарда кислородом входе сердечного цикла, по-видимому, сопровождаются периодическими колебаниями напряжения О2 в клетках миокарда. При физической нагрузке создаются дополнительные трудности для нормального снабжения миокарда кислородом. Сердце, выполняющее в этих условиях большую работу, потребляет и большее количество О2. В то же время увеличение частоты сокращений сердца приводит к значительному укорочению диастолы, и в результате нарушается соответствие между снабжением сердца кислородом и потребностью в нем. В связи с этим переносимость физической нагрузки ограничена предельной частотой сокращений сердца, равной примерно 200 ударов в 1 мин. Действительно, на ЭКГ в этих условиях часто появляются типичные симптомы гипоксии миокарда (снижение сегмента ST, уплощение или инверсия зубца Т) (ср. с. 475).
|