Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На покупательский спрос





 

В.мировой практике довольно широко используют формулы Торнквиста, причем 1-го типа - для моделирования спроса на продукты питания, а 3-го типа - для моделирования спроса на предметы роскоши. Спрос ряда непродовольственных товаров аппроксимируется степенной функцией, или экспонентой (особенно на активных этапах жизненного цикла товаров). Общие закономерности спроса нередко отражаются кривой Гомперца. При изучении влияния фактора дохода на спрос может быть использована логистическая (сигмоидальная) кривая. Процесс затухания роста спроса по мере перехода к группам населения с высоким доходом удачно отражается полулогарифмической функцией.

Рассмотрим пример (условный) зависимости доли непродовольственных товаров в покупках семьи от дохода на душу населения. В соответствии с законом Энгеля, чем больше доход в семье, тем больше доля покупок непродовольственных товаров. При этом рост доли не пропорционален увеличению дохода, а отстает от него. Предположим, что это замедление можно смоделировать уравнением регрессии полулогарифмической функции (см формулу 5.16).

Прежде всего построим таблицу для расчета параметров уравнения и корреляционного отношения. Сложные модели строят с помощью ПЭВМ и пакетов прикладных программ, более простые - используя систему нормальных уравнений (для линейных и линеаризованных уравнений, а также для полиномов любой степени). Как правило, вручную больше трех нормальных уравнении для параболы 2-го порядка не строят. Нам потребуется система из двух уравнений:

(5.15)

Рабочая таблица строится таким образом, чтобы располагать показателями и данными, необходимыми для расчета корреляционного отношения (табл. 5.7).

По данным, приведенным в табл. 5.7 (итоги гр. 2-6), построена система нормальных уравнений:

Решив данную систему, определяем параметры следующего уравнения регрессии, отражающего зависимость доли непродовольственных товаров в общем объеме покупок товаров семьей от дохода в расчете на одного члена семьи:

 

Подставляя значения логарифма факторного признака, заполняем гр. 8 таблицы (равенство ее итога с итогом гр. 3 свидетельствует о точности расчета). После этого производится последовательный расчет гр. 9 (разность гр.З и гр. 8 возводится в квадрат). Итог гр. 9 делится на число групп в таблице, в результате получена остаточная дисперсия: s2ост = 1,55488. Общая дисперсия результативного признака определяется по формуле (средняя квадрата результативного признака минус квадрат его средней):

Это означает очень высокую степень тесноты связи. Квадрат корреляционного отношения (коэффициент детерминации), равный в нашем примере 0,970, показывает, что 97% вариации результативного признака объясняется изучаемым фактором (доходом) и только 3% остается на долю случайных воздействий.

Рассчитанные данные позволяют определить правильность выбора функции для построения модели. Рассчитывается среднеквад-ратическое отклонение эмпирических данных от теоретической линии как корень квадратный из остаточной дисперсии. В нашем примере оно составляет 1,247. Исчислив его процентное отношение к среднему значению результативного признака, получим коэффициент аппроксимации:

Коэффициент аппроксимации очень близок к 0, что подтверждает правильность выбора функции. На рис. 5.5 графически отражена зависимость структуры покупок от дохода.

 

 

 

Рис. 5.5. Зависимость структуры покупок от дохода

 

Мы получили очень эффективный инструмент анализа закономерностей спроса. Однако в реальности на спрос оказывает влияние одновременно не один, а комплекс факторов (рис. 5.5), что выявляется с помощью множественной корреляции и регрессии.

Чаще всего применяют линейную форму множественной регрессии:

(5.17)

 

Если же характер множественной связи явно нелинейный, то чаще всего прибегают к использованию линеаризованных форм степенной и показательной функций.

 

Модели множественной регрессии определяются на компьютерах с помощью пакетов прикладных программ. Одновременно рассчитываются коэффициенты множественной корреляции и детерминации. Большинство программ позволяют также рассчитать частные коэффициенты корреляции, отражающие «чистое» влияние только одного выбранного фактора и исключающие влияние всех остальных. Кроме того, рассчитываются так называемые бета-коэффициенты, дающие возможность сравнивать между собой силу влияния каждого фактора.

Очень интересные результаты в маркетинговом исследовании может дать один из методов многомерной статистики - кластерный анализ. В результате применения достаточно сложных действий (выполняемых на компьютере с использованием пакета прикладных программ) образуются группы качественно однородных единиц - кластеров, сформированные не по одному, а по совокупности факторов. В частности, этот метод применяется в региональном анализе и в процессе сегментации рынка. Приведем пример кластеризации регионов России за 1995 г. по признаку валового регионального продукта на душу населения, выполненный Н.В. Хорошиловой в своей кандидатской диссертации[48] (таблица 5.8 дана с некоторыми изменениями).

Таблица 5.8







Дата добавления: 2015-10-02; просмотров: 493. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия