Студопедия — Законы Ома и Джоуля - Ленца в дифференциальной форме
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Законы Ома и Джоуля - Ленца в дифференциальной форме






Из Опыта известно что сопротивление R цилиндрического проводника длиною l и площадью поперечного сечения S:

ρ S,

ρ = ρ (1+αtoC), I= , I= ∙S │:S, =

Это эквивалентно выражению: ј =σE

- это закон Ома в диф.форме; если присутствуют сторонние силы:

Закон Джоуля-Ленца (1841-1842)

При прохождении заряда q по участку цепи I=q/t, q=It, совершается работа A=qU=IUt

Если проводник неподвижный и отсуствует хим.реакции, то работа А идёт на увеличение внутренней энергии проводника: Q=IUt. Чаще в такой форме Q= Rt.

Если ток переменный I=I(t): dQ= (t)Rt, Q= (t)Rdt

Получим теперь закон в диф.форме(локальной форме): Объёмной плотностью тепловой мощности называется тепловая энергия в единице объёма за единицу времени:

Поскольку Q=IUt то получим: ω = = = јE

– закон Джоуля-Ленца в диф.форме

ω=σ ,т.к E=ј/σ, ω= ρ

 

 

18. Правило Киргоффа расчёта разветвлённых электр.цепей.

Рассмотрим электр. цепь.

А и В - узлом называется точка в которой сходятся 3 и более проводника.

1 правило Кирхгоффа: «алгебр сумма токов сход в узле = 0»

=0

ток I входящий в узел счит «,вых «-».

узел A: I1-I2-I=0 (1), узел B:-I1-I2+I=0 (2)

2 правило Кирхгоффа: «алгебр сумма произв сил токов на сопротивление соотв уч контура = алгебр сумме ЕДС в рассм контуре»: = При этом выбирают определённое направление обхода контура, если направление тока совпадает с направлением обхода контура то его считают положительным. ЭДС считают + если при выбранном направлении ток проходит от – к +. При этом число независимых уравнений получается меньше чем общее число контуров.

r 1 1R1: I1r1+IR= 1 (3)

1 r 1 2 r 2:I1r1-I2r2= 1- 2 (4)

R 2 r 2:I2 r2+IR= 2 (5)

(4)+(5) 3. (1) (3) (4) позволяют найти токи I1 I2 I

 

 

20. Закон Ома в классической электронной теории

Основные положения классической электронной теории Mе:

1) в Mе имеющих поликристаллическую структуру имеются свободные электроны: электроны положительности, электронный газ;

2) электроны участвуют в упорядоченном и хаотическом движениях. Упорядоченные движения описываются механикой Ньютона: F=ma

3) хаотическое движение электрона описывается моделью идеального газа, подчиняющегося классической статистике Максвелла-Больцмана.

4) между кристаллической решеткой Ме и электронами проводимости устанавливается тепловое равновесие.

Получим дифференциальную форму закона Ома из электронной связи:

плотность j связана с концентрацией электронов n, зарядом e, скоростью упорядоченного движения <v> соотношением:

j=en<v>, I=q/t=enV/t=enSl/t=enSv, I/S=env, j=en<v>

Пусть «е» при соудар с узлом кристаллической решетки полностью передает всю энергию решетке и нач движение с vo=0. Под действ эл-кого поля с напряженностью E на «е» будет действ сила: F=eE. Тогда «е» приобретает ускорение: a=F/m=eE/m. Мax скорость электрона в конце свободного пробега будет равна: vmax=a<τ>; <τ> - среднее время свободного пробега. vmax=eE/m<τ>. Т.к. движение электрона равноускоренное, то скорость электрона равна: . Ср время свободного пробега <τ> равно отношению ср длины св проб <l> к ср скор хаотического движения электронов <u>: <τ> =<l>/<u>. <v>=eE<l>/2m<u>. В этом случае мы пренебрегаем скоростью упорядоченного движения электронов в сравнении со скоростью хаотического, теплового движения электронов: <u> >> <v>: Т обр пол: j=e·n·e·E<l>/2m<u>=δE; δ=e2n<l>/2m<u> - электропроводность (j= δE). Если бы «е» не сталкивались с узлами решетки, то ср длина своб пробега l=∞ и электропроводность δ=∞ и не было бы эл-кого сопротивления. Тогда электрическое сопротивление мет в классической электронной теории вызвано столкновением свободных электронов с ионами решетки. По классической теории удельное сопротивление ρ=1/δ пропорционально средней скорости теплового движения <u>: <u>=√(8kT/2m)~√T. из опыта вытекает, что ρ=ρо(1+αT)

Классическая электронная теория расходится с опытом потому, что:

1) движение электронов в Ме описывается не II законом Ньютона, а уровнением квантовой механики Шредингера;

2) поведение эл. газа подчиняется не классической теории Максвелла-Больцмана, а Ферми- Дирака;

3) при низких температурах взаимодействие между электронами доминирует над взаимодействием между электронами и решеткой.

В квантовой механике электроны проявляют волновые свойства и тогда сопротивление Ме обусловлено рассеиваньем электронных волн на квантах колебаний узлов кристаллической решетки – фононах.

21. Сила Ампера. Вектор магнитной индукции

Оп путем было устан, что движущиеся эл-кие заряды, т. е. токи создают магнитные поля. Магнитное поле проявляется под действием сил магнитного взаимодействия. Магнитное поле в отличие от эл-кого действует только на движ заряды, на покоящиеся заряды не действует. (монополь – магнитный заряд) Сп-сть магнитного поля вызывать мех силу в каждой точке поля, действ на элемент тока Id(в-р)l хар-тся магнитной индукцией (вектор) B. Эл-т тока Id(в-р)l есть произв силы тока I на беск малый отрезок проводника d(в-р)l, направл по току. dI(в-р)l играет роль пробного заряда в электростатике. Ампер эксп-но установил, что сила d(в-р)F действ на элемент тока Id(в-р)l с индукцией (в-р) B равна: – закон Ампера (сила Ампера). Если проводник прямолинейный и магнитное поле однородное (одинаковое в каждой точке), интегрируя последнее выражение, получаем: . Направление силы Ампера (в-р)F опр по правилу в-рного произведения. Сила (в-р)F ┴-а пл-сти, в кот лежат в-ры l и B и напр силы (в-р)F опред правилом правого винта: «если рукоятка правого винта вращается от первого вектора l ко второму ве-ру B на кратчайший угол, то поступательное движ винта указ направление силы (в-р)F». Модуль силы Ампера: . Сила Ампера нецентральная, т. е. зависит от ориентации проводника с током в магнитном поле. Из з-на Ампера обычно определяют магнитную индукцию (в-р) B. Пусть проводник прямолинейный и ┴-ый однородному магнитному полю (в-р) B: F=IlB, B=F/Il. Магнитная индукция (вектор) B – силовая, в-ная хар-ка магнитного поля, числ равная силе, действ- со стороны однородного магнитного поля на единицу длины проводника, по которому течет ток =1А и расположение проводника ┴-о напр магнитного поля. Ед изм В в системе СИ явл Тесла (Тл). 1 Тесла – магнитная индукция такого однородного магнитного поля, кот действует с силой 1Н на каждый метр длины проводника с током 1А и расположенное ┴-о магнитному полю: 1Тл=1Н/(1А*1м). Из опытов вытекает, что для магнитных полей справедлив принцип суперпозиции: . Поле (в-р) B, порожденное несколькими движущими зарядами или токами, равно в-рной сумме полей (в-р)Bi, порожденных каждым зарядом или током в отдельности. Магнитное поле, как и эл-кое, изображается магнитными силовыми линиями – линиями (в-р) B. Линии магнитной индукции (в-р) B – это линии, касат к кот в каждой точке совпадают с напр в-ра B. Линии (в-р) B всегда замкнуты, что указывает на вихревой характер магнитного поля, на отсутствие магнитных зарядов, на кот могли бы начинаться и заканчиваться силовые линии. По густоте силовых линий судят о величине магнитного поля; там где силовые линии редкие – магнитное поле слабое.

Линии индукции прямолинейного проводника с током представляют собой концентрические окружности, центры которых лежат на оси тока.

При поступательном движении правого винта направление вращения рукоятки винта указывает направление силовых линий.

 







Дата добавления: 2015-10-02; просмотров: 692. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия