Решение. Сила Р приложена с эксцентриситетом, величина которого определяется его составляющими вдоль оси х: ех = 0,25 м и вдоль оси у: еу = 0,2 м
Сила Р приложена с эксцентриситетом, величина которого определяется его составляющими вдоль оси х: ех = 0,25 м и вдоль оси у: еу = 0,2 м. От внецентреннего приложения силы возникает косой изгиб, составляющие изгибающего момента относительно осей х и у соответственно равны: Наибольшее по абсолютному значению напряжение возникает в точках ребра СС'; здесь всем внутренним силовым факторам N = — Р, Мх и Му соответствует возникновение сжимающих напряжений; наименьшее по абсолютному значению напряжение будет в точках ребра АA ', там моментам Мх и Му соответствуют растягивающие напряжения, а продольной силе N = -- P — сжимающие. Для определения напряжения в угловых точках сечения воспользуемся формулой Вычисляем моменты сопротивления: Подставляя числовые значения, выраженные в кН и м, в формулу нормальных напряжений σ, получаем: для точки С для точки А При заданном эксцентриситете силы в точке А возникают растягивающие напряжения. На рис. 2.67, б построены все три составляющие эпюры нормальных напряжений в поперечном сечении столба, соответствующие внутренним силовым факторам N, Мх, Му.
Контрольные вопросы и задания
1. Какие внутренние силовые факторы возникают в сечении балки при чистом и поперечном изгибах? 2. Почему при поперечном изгибе в продольных сечениях балки возникают касательные напряжения? 3. Каким опытом можно подтвердить возникновение касательных напряжений в продольных сечениях балки? 4. В какой точке поперечного сечения (рис. 33.8) касательные напряжения при поперечном изгибе максимальны? Варианты ответов: 1. А. 2. В. 3. С. 4. D. 5. Выберите верную эпюру распределения нормальных напряжений при изгибе (рис. 33.9). Напишите формулу для расчета нормальных напряжений при изгибе. Изгибающий момент действует в вертикальной плоскости. 6. Как изменится максимальное нормальное напряжение в сечении (рис. 33.10а), если балку прямоугольного сечения положить плашмя (рис. 33.10б)? b = 20 мм; h = 100 мм. 7. Во сколько раз увеличится прогиб балки, если распределенную по всей длине нагрузку заменить сосредоточенной, приложенной в середине пролета? Использовать формулы для определения прогибов, приведенные в таблице 33.1.
|