Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон сохранения импульса





Рассмотрим систему, состоящую из n материальных точек. Обозначим через силу, с которой материальная точка k действует на i -ю материальную точку (т.е. – это внутренняя сила). Обозначим через , результирующую всех внешних сил, действующих на i -тую материальную точку. Тогда, согласно второму закону Ньютона

(1)

Сложим все эти уравнения

(2)

Согласно третьему закону Ньютона каждая из скобок равна нулю. Следовательно, сумма внутренних сил, действующих на тела системы всегда равна нулю, т.е. . (3)

С учетом этого из (2) получим . (4)

Введем понятие импульса системы . (5)

С учетом этого из (4) находим , (6)

где , т.е. производная по времени импульса системы равна геометрической сумме внешних сил, действующих на тела системы.

Если ,то соответственно и, следовательно,

. (7)

Итак, если геометрическая сумма внешних сил, действующих на систему, равна нулю, то импульс системы сохраняется, т.е. не изменяется со временем. В частности, это имеет место, когда система замкнута: .

Импульс замкнутой системы сохраняется.

Это утверждение представляет закон сохранения импульса – фундаментальный закон природы, не знающий никаких исключений. В таком широком понимании закон сохранения импульса не может рассматриваться как следствие законов Ньютона.

Оказывается, в основе закона сохранения импульса лежит однородность пространства: т.е. одинаковость свойств пространства во всех его точках.

Однородность пространства означает, что если замкнутую систему перенести из одного места в другое, поставив при этом все тела в ней в те же условия, в каких они находились в прежнем положении, то это не отразится на ходе всех последующих явлений.







Дата добавления: 2015-10-02; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия