Постулаты Эйнштейна требовали коренного пересмотра представлений о свойствах пространства, времени и движения. Покажем это на простом примере.
Представим себе, что движущейся системой отсчета K', является поезд. Пусть в момент, когда его хвостовой вагон поравнялся со стрелочником (система отсчета K), стоящим на насыпи, из этого вагона был послан световой сигнал машинисту. Через время
машинист этот сигнал регистрирует, тогда скорость света
, где
– длина поезда в системе K'.
Обозначим через
время, отсчитываемое стрелочником. Что касается пути, пройденного светом с точки зрения стрелочника, то он состоит из длины поезда
, движущегося со скоростью V,и расстояния Vdt, на которое за время
хвостовой вагон отъедет от стрелочника.
Итак, с точки зрения стрелочника
.
Очевидно, что
(7)
несовместимо с условиями
.
Нужно либо считать, что
, т. е. поезд с точки зрения стрелочника стал короче, либо время
в движущейся системе идет медленнее, т. е.
. Оказывается, имеет место и то и другое одновременно.
Покажем, что движущиеся часы идут медленнее. Для этого рассмотрим две инерциальные системы отсчета K и K'. Систему K будем считать покоящейся, а систему K' – движущейся со скоростью V, (см. рис. 2).
Предположим, что в системе
K находятся часы в виде двух параллельных зеркал и источника света. Они неподвижны в системе
K'. Свет включается на короткое время и начинает двигаться вверх и вниз, попеременно отражаясь от верхнего и нижнего зеркал, (см. рис. 2.). В таких часах качающимся маятником является луч света.
Рассмотрим один из полупериодов, когда свет движется сверху вниз. Пусть с точки зрения наблюдателя системы K' это происходит за время D t', тогда расстояние между зеркалами будет
, причем оно будет поперечным, как по отношению системы K', так и системы K, и поэтому одинаковым в этих системах. Однако с точки зрения наблюдателя системы K свет распространяется наклонно, т. е. свет будет снесен вправо на расстояние VDt. ![](https://konspekta.net/studopediainfo/baza8/5009202080791.files/image763.png)
Из рис. 3 по теореме Пифагора находим
, откуда
, (8)
где
, т. е. движущиеся часы идут медленнее, чем неподвижные.
Подтверждением этого служит время жизни движущихся мюонов; собственное время их жизни
мкс, а по часам неподвижным относительно Земли - значительно больше:
, (9)
где V – скорость мюона относительно Земли,
– коэффициент Лоренца,
.
Подобным образом можно показать, что размеры тел в направлении движения сокращаются, т. е.
. (10)
Исходя из двух постулатов, Эйнштейн в 1905 г. вывел преобразования Лоренца (полученные Лоренцом в 1904 г. как преобразования, по отношению к которым уравнения классической микроскопической электродинамики – уравнения Лоренца- Максвелла сохраняют свой вид).
Напишем их подобно преобразованиям Галилея:
, (11)
. (12)
Для медленных движений, когда
преобразования Лоренца переходят в преобразования Галилея. Используя соотношения (11), (12), можно показать, что пространственные расстояния при преобразованиях Лоренца изменяются, т. е.
, где
(13)
. (14)
Этот эффект называется лоренцевым сокращением длины.
Неизменным (инвариантным) при преобразованиях Лоренца остается так называемый интервал между событиями
. (15)