Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразования Галилея. Принцип относительности Галилея





Если системы отсчета движутся относительно друг друга равномерно и прямолинейно и в одной из них справедлив 1- й закон Ньютона, то эти системы являются инерциальными. Галилей установил:

во всех инерциальных системах отсчета законы классической механики имеют одинаковую форму.

В этом заключается суть принципа относительности Галилея.

Для его доказательства рассмотрим две системы отсчета, движущиеся друг относительно друга с постоянной скоростью , вдоль направления OX, рис. 1.

Одну из них обозначим буквой K и будем считать неподвижной, другую, которая движется со скоростью обозначим . Предположим, что в начальный момент времени t= 0 начало О совпадает с , Пусть в момент времени t движущаяся точка находится в положении М, тогда

,

причем

.

Рис. 1
Таким образом,

. (1)

Запишем (1) в проекциях

. (2)

Формулы обратного преобразования имеют вид

(3)

. (4)

Формулы (2) или (4) носят название преобразований координат Галилея. В них время считается абсолютным и поэтому не преобразуется.

Соотношения (1) – (4) справедливы лишь в рамках классической механики, когда V<<c.

Дифференцируя (1) по времени t, получим

или , (5)

где – скорость точки М в системе отсчета K, а – в системе K'.

Эта формула выражает нерелятивистский закон сложения скоростей или правило сложения скоростей в классической механике (она остается справедливой и в случае, когда непостоянна).

Дифференцируя (5) в предположении , получим

или . (6)

Таким образом, ускорение в обеих инерциальных системах отсчета одно и то же, или говорят: ускорение инвариантно (неизменно, независимо) относительно преобразования Галилея.

Следовательно, уравнение движения не изменяется при переходе от одной инерциальной системы к другой. Таким образом:

уравнения механики Ньютона инвариантны относительно преобразований Галилея.

Это утверждение носит название принципа относительности Галилея. Из него следует, что никакими механическими опытами, проведенными внутри данной системы отсчета, нельзя установить, находится ли система в покое или движется равномерно и прямолинейно.







Дата добавления: 2015-10-02; просмотров: 615. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия