Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энтропия. Энтропия и вероятность, скорость продукции энтропии. Соотношение Онзагера между потоком и движущей силой есть взаимосвязь.





Для систем находящихся вблизи состояния равновесия собственная скорость продукции энтропии diS/dt = SσdV > 0, мин, где σ- функция диссипации. Если процесс происходит в изолированной системе (dQ = 0), то в обратном процессе энтропия не изменяется S2 – S1 = 0, S – постоянное, а в необратимом – возрастает. Если небольшое количество теплоты dQ переходит от 1 тела ко второму, то при этом энтропия первого тела уменьшается на dS1 = dQ/T1, а второго увеличивается на dS2= d Q/T2 Полное изменение энтропии системы +, dS = - dS1 + dS2 = d Q/T2 - d Q/T1 > 0, отсюда следует, что энтропия изолированной системы возрастает. Энтропия системы организма – окружающей среды возрастает как у изолированной системы, однако энтропия организма при этом сохраняется постоянной. Упорядоченность организма сохраняется ценой уменьшения упорядоченности окружающей среды. dS/dt = dSi/dt + dSe/dt, для стационарного состояния (dS/dt = 0), изменение S обуславливается dSi/dt = - dSe/dt, изменение S вызванное взаимодействием системы с внешними телами. По принципу Пригожина, производная dSi/dt больше 0, отсюда следует, что скорость изменения энтропии окружающей среды при сохранении стационарного состояния организма также минимальна. Энтропия – мера неупорядоченности частиц системы. Неупорядоченность состояния системы количественно характеризуется так же термодинамической вероятностью (W) - число способов размещения частиц или число микросостояний, реализующих данное макросостояние. Частицы газа: а, b, c, d находятся в V разделенном на 2 равные ячейки (1 – ячейка – а, 2 – ячейка – b, c, d – 1 – V, 1 – ячейка – b, 2 – ячейка – а c, d - 2– V, 1 – ячейка – с,2 – ячейка – b, а,d – 3– V, 1 – ячейка – d,2– ячейка – b, c, а– 4– V) – 1 – макросостояние, 4 – микросостояний. (1 – ячейка – а, b, 2 – ячейка – c, d – 1 – V, 1 – ячейка – а c, 2– ячейка – b, d - 2– V, 1 – ячейка – а, d, 2– ячейка – b, с3– V, 1 – ячейка – b, c, 2– ячейка – а, d - 4– V, 1 – ячейка – b, d, 2– ячейка – а c – 5 – V, 1 – ячейка – c, d, 2– ячейка – b, а– 6 – V) – 1 макросостояние, 6 микросостояний. Система, предоставленная самой себе стремится прийти к макросостоянию которое реализуется наибольшим количеством микросостояний. Формулировка Планка: S = klnW, k –постоянная Больцмана (связь между температурой и энергией 1,380 6504(24)×10−23 Дж·К−1).

Под термодинамической движущей силой понимают разность каких-либо потенциалов (концентраций, температур, давлений и т.д.), которая вызывает протекание соответствующего процесса, является его причиной. Под термодинамическим потоком - количественное выражение процесса, изменение характеризующей его величины за единицувремени. Между ними существует взаимосвязь, при которой увеличение (уменьшение) движущей силы вызывает увеличение (уменьшение) скорости процесса. Это относится не только к химическим реакциям, но и к другим необратимым процессам.

Если система находится вблизи равновесия, где величины движущих сил и потоков очень малы, то между ними имеется прямая пропорциональная зависимость: J = LX, где Х - движущая сила, J - величина потока, L - постоянный линейный коэффициент.

Если в открытой системе вблизи равновесия протекают одновременно несколько процессов, то между ними существуют термодинамические соотношения, отражающие их взаимное влияние. Для двух процессов (J1, X1) и (J2, X2) эти соотношения имеют вид J1 = L11X1 + L12X2, J2 = L21X1 + L22X2, где постоянные коэффициенты L11, L22 отражают зависимость потока от своей силы, а коэффициенты L12, L21 соответствуют взаимному влиянию силы одного процесса на поток другого процесса. Они носят название коэффициентов взаимности Онзагера. Вблизи равновесия L12 = L21.

Закон Ома для участка цепи I = U/R, I = fx, 1/R = f – линейный коэффициент Онзагера. Поток вещества через систему Q = (P1 – P2)/x, I1 = f11x1 + f12x2, I2 = f21x1 + f22x2, I = - URT(dc/dx). Как один поток влияет на другой, так другой влияет на первый. f21 = f12 уравнение взаимности Онзагена.

.
5. Вязкость жидкости. Уравнение Ньютона. Кровь как неньютоновская жидкость
.

При течении реальной жидкости отдельные слои ее воздействуют друг на друга с силами, касательными к слоям. Это явление называют внутренним трением или вязкостью. Рассмотрим течение вязкой жидкости между двумя твердыми пластинками, из которых нижняя неподвижная, а верхняя движется со скоростью υk. Условно представим жидкость в виде нескольких слоев 1, 2, 3 и так далее. Слой "прилежащий'' ко дну неподвижен. По мере удаления от дна (нижняя пластинка) слои жидкости имеют все большие скорости (υ1 меньше υ2меньше υ3 и тд.), максимальная скорость υк будет у слоя, который "прилежит" к верхней пластинке. Слои воздействуют друг на друга. Так, например. 1 -слои стремится ускорить движение второго, но сам не поддастся торможению с его стороны, а ускоряется четвертым слоем и так далее.

Ньютон показал, что сила внутреннего трения пропорциональна площади S взаимодействующих слоев и градиенту скорости между ними d υ /dx: Fтр = η(dυ/dx)*S. здесь η - коэффициент пропорциональности, называется коэффициентом внутреннего трения или динамической вязкостью. Вязкость зависит от состояния и молекулярных свойств жидкости (или газа). Единица вязкости является паскаль - секунда (Па * с), в системе вязкость выражают в пуазах (П): 1 Па*с=10П.

Для многих жидкостей вязкость не зависит от градиента скорости, такие жидкости подчиняются уравнению Ньютона и их называют ньютоновскими жидкостями, жидкости не подчиняющиеся – ньютоновские. Вязкость ньютоновских жидкостей называется нормальной, а не ньютоновских -аномальнои. Жидкости, состоящие из сложных и крупных молекул, например раствора полимеров и образующие благодаря сцеплению молекул пли частиц пространственную структуру, являются неньютоновскими. Их вязкость при прочих равных условиях много больше, чем у простых жидкостей Увеличение вязкости происходит потому, что при течении этих жидкостей работа внешней силы затрачивается не только на преодоление ньютоновской вязкости но и на разрушение структуры. Кровь является неньютоновской жидкостью, это суспензия форменных элементов в плазме В крупных состояниях образуются агрегаты эритроцитов В мелких сосудах градиент д υ /дх увеличивается и агрегаты распадаються. Для этих сосудов чем меньше d, тем меньше вязкость крови. В капиллярах эритроциты деформируются. S соприкосновения увеличивается, обменные процесс возрастают (при понижении температуры, вязкость возрастает, с 37 градусов до 17" больше 10%)

 








Дата добавления: 2015-10-12; просмотров: 1231. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия