Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные числа и собственные векторы. Квадратичные формы. Матрица квадратичной формы. Привести пример.





 

Собственные числа и собственные векторы.

Рассмотрим линейный оператор A, действующий в линейном пространстве X: y = A (x), ∀ xX, yX.

Число λ называется собственным значением оператора A, если существует такой ненулевой вектор x, что справедливо равенство A (x) = λ· x. Любой ненулевой вектор x0, удовлетворяющий этому уравнению, называется собственным вектором оператора A, отвечающим собственному значению λ.

A (x) = λ· x, x0, xX.

Пусть A квадратная матрица. Число λ называется собственным значением матрицы A, если существует такой ненулевой вектор x, что справедливо равенство A · x = λ· x. Любой ненулевой вектор x0, удовлетворяющий этому уравнению, называется собственным вектором матрицы A, отвечающим собственному значению λ.

A · x = λ· x, x0.

Квадратичные формы.

Пусть числовая функция φ(x, y) — билинейная форма в пространстве L.

Числовая функция k (x) = φ(x, x) называется квадратичной формой в пространстве L.

Какова бы ни была квадратичная форма, существует единственная симметричная билинейная форма, из которой эта квадратичная форма может быть получена. Такая билинейная форма по отношению к квадратичной форме называется полярной билинейной формой. Полярная билинейная форма может быть вычислена по формуле:

Матрица квадратичной формы.

Пусть e 1,..., e n — базис в L. И пусть для вектора x из L задано разложение x = x 1· e 1+ x 2 ·e 2+...+ xn · e n. Тогда для квадратичной формы k (x) справедливо представление

Здесь φ(ei, ej) — значение полярной для k (x) билинейной формы φ(x, y).

Матрица A = { aij } называется матрицей квадратичной формы. Определённая таким образом матрица квадратичной формы является симметричной матрицей.

 

Примеры.

1) Пусть φ(x, y) = (x, y) для ∀ x∈ E, ∀y∈ E билинейная форма в пространстве E. Здесь (x, y) − скалярное произведение в пространстве E. Тогда числовая функция k (x) = φ(x, x) = (x, x) — квадратичная форма в пространстве E. Поскольку φ(x, y) = (x, y) —симметричная билинейная форма, то она является полярной билинейной формой для квадратичной формы k (x) = (x, x).

 

2) Пусть k (x) = x 12 + x 22 квадратичная форма в пространстве R2.

Пусть e 1= (1, 0), e 2= (0, 1) — базис в R2. Вычислим матрицу A квадратичной формы.

Поскольку симметричная билинейная форма φ(x, y) = (x, y) — полярная для квадратичной формы k (x) = φ(x, x) то матрица A квадратичной формы совпадает с матрицей Φ; билинейной формы φ(x, y):

 

 

Проверим. Для этого подставим матрицу A в матричное представление квадратичной формы k (x)= xT·A·x:

 

 

Матрица квадратичной формы вычислена верно.







Дата добавления: 2015-10-12; просмотров: 676. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия