Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Операторы. Линейные операторы. Матрица оператора. Базис.





 

Линейные операторы.

Оператором называется правило, по которому каждому элементу x некоторого непустого множества X ставится в соответствие единственный элемент y некоторого непустого множества Y. Говорят, что оператор действует из X в Y.

Действие оператора обозначают y = A (x), y — образ x, x — прообраз y.

Если каждый элемнт y из Y имеет единственный прообраз x из X, y = A (x), оператор называют взаимно однозначным отображением X в Y или преобразованием X, X — область определения оператора.

Пусть X и Y два линейные пространства. Оператор A, действующий из X в Y, называется линейным оператором, если для любых двух элементов u и v из X и любого числа α справедливо:

A (u + v) = A (u) + A (v), A (α·u) = α· A (u).

Множество векторов y линейного пространства Y, для каждого из которых существует такой вектор x из линейного пространства X, что y = A (x) называется образом оператора A:

Im(A) = {y | y = A (x), x∈ X }, Im(A) ⊆ Y.

Образ линейного оператора — линейное подпространство пространства Y. Размерность образа линейного оператора называется рангом оператора: rank A = dim (Im A); rank A = rang A = rg A = Rg A.

Матрица оператора.

Линейный оператор A действует из n -мерного линейного пространства X в m -мерное линейное пространство Y.

В этих пространствах определены базисы e = {e 1,..., e n } и f = {f 1,..., f m }.

Пусть A (e i) = a 1 i ·f 1 + a 2 i ·f 2 +...+ a m i ·f m — разложение образа i -го базисного вектора базиса e пространства X по базису f пространства Y, i = 1, 2,..., n.

Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f, A = { a i j } = { A (e j) i }:

Координаты образа y = A (x) и прообраза x связаны соотношеннием:

y = A · x,


Базис линейного пространства.

Система векторов линейного пространства L образует базис в L если эта система векторов упорядочена, линейно независима и любой вектор из L линейно выражается через векторы системы.

Иными словами, линейно независимая упорядоченная система векторов e 1,..., e n
образует базис в L если любой вектор x из L может быть представлен в виде

x = С1· e 12 ·e 2+...+С n · e n.

Можно определить базис иначе.

Любая упорядоченная линейно независимая система e 1,..., e n векторов n- мерного линейного пространства Ln образует базис этого пространства.

Поскольку n, размерность пространства Ln — максимальное количество линейно независимых векторов пространства, то система векторов x, e 1,..., e n линейно зависима и, следовательно, вектор x линейно выражается через векторы e 1,..., e n:

x = x 1· e 1+ x 2 ·e 2+...+ xn · e n.

Такое разложение вектора по базису единственно.







Дата добавления: 2015-10-12; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия