Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Операторы. Линейные операторы. Матрица оператора. Базис.





 

Линейные операторы.

Оператором называется правило, по которому каждому элементу x некоторого непустого множества X ставится в соответствие единственный элемент y некоторого непустого множества Y. Говорят, что оператор действует из X в Y.

Действие оператора обозначают y = A (x), y — образ x, x — прообраз y.

Если каждый элемнт y из Y имеет единственный прообраз x из X, y = A (x), оператор называют взаимно однозначным отображением X в Y или преобразованием X, X — область определения оператора.

Пусть X и Y два линейные пространства. Оператор A, действующий из X в Y, называется линейным оператором, если для любых двух элементов u и v из X и любого числа α справедливо:

A (u + v) = A (u) + A (v), A (α·u) = α· A (u).

Множество векторов y линейного пространства Y, для каждого из которых существует такой вектор x из линейного пространства X, что y = A (x) называется образом оператора A:

Im(A) = {y | y = A (x), x∈ X }, Im(A) ⊆ Y.

Образ линейного оператора — линейное подпространство пространства Y. Размерность образа линейного оператора называется рангом оператора: rank A = dim (Im A); rank A = rang A = rg A = Rg A.

Матрица оператора.

Линейный оператор A действует из n -мерного линейного пространства X в m -мерное линейное пространство Y.

В этих пространствах определены базисы e = {e 1,..., e n } и f = {f 1,..., f m }.

Пусть A (e i) = a 1 i ·f 1 + a 2 i ·f 2 +...+ a m i ·f m — разложение образа i -го базисного вектора базиса e пространства X по базису f пространства Y, i = 1, 2,..., n.

Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f, A = { a i j } = { A (e j) i }:

Координаты образа y = A (x) и прообраза x связаны соотношеннием:

y = A · x,


Базис линейного пространства.

Система векторов линейного пространства L образует базис в L если эта система векторов упорядочена, линейно независима и любой вектор из L линейно выражается через векторы системы.

Иными словами, линейно независимая упорядоченная система векторов e 1,..., e n
образует базис в L если любой вектор x из L может быть представлен в виде

x = С1· e 12 ·e 2+...+С n · e n.

Можно определить базис иначе.

Любая упорядоченная линейно независимая система e 1,..., e n векторов n- мерного линейного пространства Ln образует базис этого пространства.

Поскольку n, размерность пространства Ln — максимальное количество линейно независимых векторов пространства, то система векторов x, e 1,..., e n линейно зависима и, следовательно, вектор x линейно выражается через векторы e 1,..., e n:

x = x 1· e 1+ x 2 ·e 2+...+ xn · e n.

Такое разложение вектора по базису единственно.







Дата добавления: 2015-10-12; просмотров: 623. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия