Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кривые стержни









29 Устойчивость сжатых стержней. Вывод формулы Эйлера.

Упругое равновесие устойчиво, если деформированное тело при любом малом отклонении от состояния равновесия стремится вернуться к первоначальному состоянию и возвращается к нему при удалении внешнего воздействия. Нагрузка, превышение которой вызывает потерю устойчивости, называется критической нагрузкой Ркр(критической силой). Допускаема нагрузка [P]=Pкр/ny, ny– нормативный коэффициент запаса устойчивости. Приближенное дифференциальное ур-ние упругой линии:

EJmin=d(*2)y/dx(*2)=M(x), Е –модуль упругости материала стержня, М – изгибающий момент, Jmin– наименьший момент инерции сечения стержня. При потере устойчивости прогиб, как правило, происходит перпендикулярно к оси наименьшей жесткости, относительно которой — J=Jmin. Рассматривается приближенное диффное ур-ие, т.к. потеря устойчивости возникает при малых деформациях. M=-Py, получаем однородное дифф-ное уравнение: (d(*2)y/dx(*2))+k(*2)y=0, где k(*2)=P/EJmin. Решая дифф-ное ур-ие находим наименьшее значение критической силы – формула Эйлера:

Pкр=Пи(*2)EJmin/L(*2) – формула дает значение критической силы для стержня с шарнирно закрепленными концами.

 

Область применения формулы Эйлера

Одним из ограничений принятых Эйлером было принято то, что материал находится в упругом состоянии т.е. критические напряжения не могут превышать предела пропорциональности. Поэтому принимаем равным критическим напряжениям определяем предельную гибкость, гибкость при которой ещё применима формула Эйлера

Поэтому если действительная гибкость ≥ предельной, то расчёты выполняются по формуле Эйлера.


30 Устойчивость сжатых стержней: гибкость стержня, предельная гибкость, формула Ясинского, расчёты на устойчивость.

Гибкость стержня — отношение расчетной длины стержня l0 к наименьшему радиусу инерции i его поперечного сечения. Это выражение играет важную роль при проверке сжатых стержней на устойчивость. В частности, от гибкости зависит коэффициент продольного изгиба φ. Стержень с большей гибкостью, при прочих неизменных параметрах, имеет более низкую прочность на сжатие и сжатие с изгибом.Расчетная длина l0 вычисляется по формуле:l0 = μl, где, μ — коэффициент, зависящий от условий закрепления стрежня, а l — геометрическая длина. Расчетная длина, также называется привиденной или свободной.Понятие приведенная длина впервые ввел Ясинский, для обобщения формулы критической силы Эйлера, которую тот выводил для стержня с шарнирно-опертыми концами. Соответственно коэффициент μ равен при шарнирных концах(основной случай) одному, при одном шарнирном, другом защемленным μ = 0.7, при обоих защемленных концах μ = 0,5. Схемы деформирования и коэффициенты μ при различных условиях закрепления и способе приложения нагрузки, изображены на рисунке. Также, стоит отметить, что формула Эйлера верна только для элементов большой гибкости, например для стали она применима при гибкостях порядка λ = 100 и выше. При расчетах элементов железобетонных конструкций к гибкости предъявляются требования по её ограничению. Также, в зависимости от гибкости назначается величина армирования.В расчетах стальных конструкций гибкость имеет наибольшее значение ввиду большой прочности стали с вытекающей из этого формой элементов(длинные, небольшой площади) из-за чего исчерпание несущей способности по устойчивости наступает до исчерпания запаса прочности по материалу. Если гибкость стержня меньше предельного значения - область ВС на рис. 8.3), то формула Эйлера становится неприменимой, так как критические напряжения превышают предел пропорциональности и закон Гука неприменим. В этих спучаях критическое напряжение определяют по эмпирическим формулам, полученным на основании опытов и приведенных в справочниках. Одна из этих формул - формула Ясинского: где а, b и с - коэффициенты, зависящие от свойств материала.Для малоуглеродистой стали коэффициенты равны где F - площадь поперечного сечения стержня.

Для коротких стержней, гибкость которых , расчет на устойчивость не производят. Предельное значение гибкости можно найти из условия , где - предел текучести материала стержня.








Дата добавления: 2015-10-12; просмотров: 1462. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия