Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модифицированный метод Эйлера.





Модифицированный метод Эйлера позволяет уменьшить погрешность на каждом шаге до величины вместо в обычном методе (6.2). Запишем разложение функции в ряд Тейлора в виде:

(6.3)

Аппроксимируем вторую производную с помощью отношения конечных разностей:

Подставляя это соотношение в (6.3) и пренебрегая членами порядка , получаем:

(6.4)

Полученная схема является неявной, поскольку искомое значение входит в обе части соотношения (6.4), но можно построить приближенное решение с использованием двух итераций.

Сначала по формуле Эйлера (6.2) вычисляют первое приближение

(6.5)

Затем находится уточненное окончательное значение

(6.6)

Такая схема решения называется модифицированным методом Эйлера и имеет второй порядок точности.

Пример 6.2. Решить задачу Коши модифицированным методом Эйлера для дифференциального уравнения

на отрезке с шагом

Решение. По формуле (6.5) вычислим первое приближение

Используя формулу (6.6), находим окончательное значение в точке

Аналогично вычисляются последующие значения функции в узловых точках

Сеточную функцию записываем в виде таблицы

  0,1 0,2 0,3
  1,1055 1,224128 1,359361

Программа решения задачи Коши модифицированным методом Эйлера отличается от приведенной на рис. 6.2 заменой отмеченных строк на следующие:

1 y1 = y + h*f(x,y)

y = y + h*(f(x,y)+f(x+h,y1))/2

Пример 6.3. Решить задачу Коши модифицированным методом Эйлера с помощью программы Excel для дифференциального уравнения

на отрезке с шагом .







Дата добавления: 2015-10-15; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия