Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разностные методы решения краевой задачи для обыкновенного дифференциального уравнения.





Линейная краевая задача имеет вид:

(6.9)

(6.10)

при .

Решение задачи (6.9)-(6.10) проводится в следующей последовательности:

1. Определение сетки.

Отрезок [a,b] делится на частей:

                   
                   
                               

, ,

2. Определение сеточной функции :

3. Аппроксимация уравнения:

Для каждой узловой точки заменяем функции и производные в уравнениях 6.9-6.10 конечноразностными аналогами:

т.е.

(6.11)

т.е.

Получаем ситему линейных алгебраических уравнений для определения неизвестных величин .

4. Решение СЛАУ. Система уравнений решается методом прогонки.

Пример 6.4. Решить краевую задачу методом конечных разностей с шагом :

Решение. Решение проводим в следующей последовательности:

1. Определение сетки:

| | | |

, - краевые точки, - внутренние точки.

2. Определение сеточной функции :

3. Аппроксимация уравнения:

при  
при  
при  
при  

Получим систему четырех линейных алгебраическихуравнений с четырьмя неизвестными , , и :

или

4. Решение системы методом прогонки.

Значения , , , записываем в виде таблицы.

        Таблица 6.1
      -5  
  106,5 -197,4 93,5 0,8
    -197,2   0,8
  -10      

 

Прямой ход прогонки. Определяем прогоночные коэффициенты и ().

, т.к.

Обратный ход прогонки. Вычисляем ().

Поскольку , то .

Сеточную функцию записываем в виде таблицы

 

1,2 1,3 1,4 1,5
2,337581 2,605098 2,845925 3,045925

 







Дата добавления: 2015-10-15; просмотров: 562. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия