Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сглаживание. Метод наименьших квадратов (МНК).





Задача аппроксимации функции может ставиться, когда исходные данные содержат погрешности (рис. 4.3а), повторы (рис. 4.3б) или очень большое количество точек (рис. 4.3в). В этих случаях аппроксимация на основе интерполяции не имеет смысла или невозможна.

а) б) в)
Рис. 4.3. Аппроксимация функции сглаживанием.

Для задачи аппроксимации сглаживанием критерий близости аппроксимирующей функции к исходным данным , рассматривается как минимальное отклонение значений в заданных точках. Количественно отклонение может быть оценено различными способами. Наибольшее распространение получил метод наименьших квадратов (МНК), согласно которому необходимо минимизировать сумму квадратов:

(4.3)

где , - значения данных - значение аппроксимирующей функции в точке ; - число данных, - незвестные параметры. Задача сводится к нахождению экстремума функции параметров .

Линейная аппроксимация. В случае линейной формулы сумма квадратов (4.3) принимает вид:

(4.4)

Функция (4.4) имеет минимум в точках, в которых частные производные от по параметрам и обращаются в нуль, т.е.

, (4.5)

 

(4.6)

 

Решая систему уравнений (4.6), получим значения и уравнения .

Пример 4.4. Подобрать аппроксимирующий полином первой степени для данных

Таблица 4.3.
       
0,2 0,9 2,1 3,7

Решение. Для удобства вычисленные значения расположим в таблице.

Таблица 4.4.
    0,2   0,2
    0,9   0,9
    2,1   4,2
    3,7   14,8
  6,9   20,1

Система для определения коэффициентов имеет вид:

(4.7)

Решая систему (4.7), получим следующие значения параметров: , . Следовательно, искомый полином имеет вид:

.

Полиномиальная аппроксимация. В случае выбора зависимости в виде полинома, например, 2-й степени и (4.3) принимает вид:

(4.8)

Функция (4.8) имеет минимум в точках, в которых частные производные от по параметрам , , обращаются в нуль, т.е.:

, , (4.9)

В результате дифференцирования и элементарных преобразований для определения параметров получают систему из трех линейных уравнений с тремя неизвестными:

Или

(4.10)

 

Решая систему линейных уравнений (4.10), получим значения параметров , и функции .

Пример 4.5. Используя МНК, построить зависимость вида , аппроксимирующую следующие табличные значения:

Таблица 4.5.
-2 -1      
    -1 -2 -1

Решение. Расчеты представим в виде таблицы.

Таблица 4.6.
  -2     -8   -12  
  -1     -1   -2  
    -1          
    -2       -2 -2
    -1       -2 -4
          -18  

Тогда система линейных уравнений (4.10) относительно значений , и примет вид:

(4.11)

Решая систему (4.11), получим следующие значения параметров ; ; . Таким образом, искомый полином имеет вид:

Таблица 4.7.
  -2   6,114 0,012
  -1   1,743 0,066
    -1 -0,914 0,007
    -2 -1,857 0,020
    -1 -1,086 0,007
     

 

Пример 4.6. Используя программу Excel, построить функцию вида , аппроксимирующую значения из таблицы 4.5:







Дата добавления: 2015-10-15; просмотров: 1882. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия