Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аппроксимация функций.





МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

 

 

Кафедра прикладной математики

 

ЧИСЛЕННЫЕ МЕТОДЫ

 

Часть 2

 

 

Методические указания к лабораторным и самостоятельным работам

по курсам «Информатика» и «Вычислительная математика»

 

Казань

 

УДК 621.313: 518.6

ББК 32.81

 

 

А95 Численные методы. Часть 2: Методические указания к лабораторным и самостоятельным работам по курсам «Информатика» и «Вычислительная математика». / Сост.: Ф.Г.Ахмадиев, Ф.Г.Габбасов, Р.Ф.Гиззятов, И.В.Маланичев. – Казань: Изд-во Казанск. гос. архитект.-строит. ун-та, 2013. – 36 с.

 

 

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета.

 

Методические указания состоят из двух частей и предназначены для выполнения лабораторных и самостоятельных работ студентами всех специальностей и направлений подготовки дневного и заочного отделений. В данной части приводятся численные методы аппроксимации функций, вычисления определенных интегралов, решения дифференциальных уравнений и задач линейного программирования.

 

 

Рецензент

Доктор физико-математических наук, профессор КГАСУ

Р.Б.Салимов

 

 

УДК 621.313: 518.6

ББК 32.81

 

 

ã Казанский государственный архитектурно-строительный университет, 2013
   
ã Ахмадиев Ф.Г., Габбасов Ф.Г., Гиззятов Р.Ф., Маланичев И.В.,
 


Аппроксимация функций.

Очень часто в практической работе возникает необходимость найти в явном виде функциональную зависимость (формулу) между величинами и , которые заданы отдельными парами значений , (таблицей), например, полученными в результате измерений.

Задача восстановления аналитической функции по отдельным значениям называется аппроксимацией. Для получения единственного решения задачи аппроксимации необходимо

1. Задать общий вид аппроксимирующей функции, включающий неизвестные параметры (коэффициенты). Вид функции задается, исходя из формы распределения аппроксимируемых значений (расположения точек на графике), из предполагаемой функциональной зависимости, или просто в виде полинома некоторой степени;

2. Определить значения параметров на основе заданного критерия близости. Здесь существует два основных подхода – интерполяция и сглаживание.

4.1. Интерполяция.

Рис. 4.1. График интерполирующей функции проходит через заданные точки.
Для задачи интерполяции критерий близости аппроксимирующей функции к исходным данным , рассматривается как совпадение значений в заданных точках, называемых узлами интерполяции (рис. 4.1), т.е.

.

Если функция задана в виде полинома, то он называется интерполяционным полиномом и может быть записан, например, в форме Лагранжа или Ньютона.

4.1.1. Интерполяционный полином в форме Лагранжа.

Пусть на некотором промежутке заданы различных узлов , , , …, , а также значения некоторой функции , , , …, в этих узлах. Необходимо построить полином , проходящий через заданные точки, т.е.

Интерполяционный полином Лагранжа имеет следующую формулу:

(4.1)

где - фундаментальные полиномы Лагранжа. Они удовлетворяют равенствам

(4.2)

и зависят лишь от заданных узлов , но не от значений интерполируемой функции .

Пример 4.1. Пусть задана таблица:

Таблица 4.1
 
Необходимо построить интерполяционный полином Лагранжа, проходящий через заданные точки

Решение. Полином Лагранжа имеет вид:

Найдем фундаментальные полиномы Лагранжа:

Подставляя в полином Лагранжа, находим:







Дата добавления: 2015-10-15; просмотров: 583. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия