Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

И аналитической геометрии. ПРАКТИЧЕСКАЯ ЧАСТЬ1.Задание (условие задачи)2





Федеральное государственное образовательное учреждение

Высшего профессионального образования

«Сибирский федеральный университет»

ИНСТИТУТ ЦВЕТНЫХ МЕТАЛЛОВ И ЗОЛОТА

МАТЕМАТИКА

КОНТРОЛЬНЫЕ ЗАДАНИЯ

Для студентов-заочников всех специальностей

Красноярск

СФУ 2012


УДК 511

Высшая математика: Контрольные задания для студентов-заочников всех специальностей академии / Сост. А. Т. Автухова, С.И. Осипова (переработано и дополнено); СФУ. - Красноярск, 2012. - 41 с.

 

Элементы векторной алгебры

и аналитической геометрии

 

1 – 10. Даны векторы (а 1; а 2; а 3), (b 1; b 2; b 3), (c 1; c 2; c 3) и (d 1; d 2; d 3) в некотором базисе. Показать, что векторы образуют базис и найти координаты вектора d в этом базисе.

1. (2; 1; 3), (3; –2; –1), (4; 1; 2), (9; 0; 4).
2. (3; 1; 4), (2; 1; –2), (–1; 5; –7), (7; 2; 2).
3. (4; 2; 1), (–1; 3; 2), (3; –1; 1), (12; 0; 1).
4. (1; 2; 3), (2; 3; 5), (–1; 3; –2), (2; –1; 5).
5. (5; 7; 1), (–2; 1; –4), (3; 2; 1), (8; 1; 6).
6. (2; 1; 3), (–5; 3; –2), (4; 2; 1), (17; 2; 10).
7. (4; 1; 5), (3; –5; 1), (1; 2; –3), (6; 5; –1).
8. (1; 3; 4), (–2; 1; 3), (2; –7; 0), (3; 3; 15).
9. (6; 1; 3), (2; 3; –1), (–1; 2; –2), (8; 8; –3).
10. (6; 3; 1), (–1; 3; 4), (2; –1; 9), (–2; –10; 0).
 

11 – 20. Даны координаты вершин пирамиды А 1 А 2 А 3 А 4. Найти:
1) длину ребра А 1 А 2; 2) угол между ребрами А 1 А 2 и А 1 А 4; 3) угол между ребром А 1 А 4 и гранью А 1 А 2 А 3; 4) площадь грани А 1 А 2 А 3; 5) объем пирамиды; 6) уравнение прямой А 1 А 2; 7) уравнение плоскости А 1 А 2 А 3; 8) уравнение высоты, опущенной из вершины А 4 на грань А 1 А 2 А 3. Сделать чертеж.

11. А 1 (2; 1; –4), А 2(1; –2; 3), А 3(1; –2; –3), А 4(5; –2; 1).

12. А 1 (2; –1; 3), А 2 (–5; 1; 1), А 3(0; 3; –4), А 4(–1; –3; 4).

13. А 1 (5; 3; 6), А 2 (–3; –4; 4), А 3(5; –6;8), А 4(4; 0; –3).

14. А 1 (5; 2; 4), А 2(–3; 5; –7), А 3(1; –5; 8), А 4(9; –3; 5).

15. А 1 (7; –1; –2), А 2(1; 7; 8), А 3(3; 7; 9), А 4(–3; –5; 2).

16. А 1 (–2; 3; 4), А 2(4; 2; –1), А 3(2; –1; 4), А 4(–1; –1; 1).

17. А 1 (0; 4; –4), А 2(5; 1; –1), А 3(–1; –1; 3), А 4(0; –3; 7).

18. А 1 (0; –6; 3), А 2(3; 3; –3), А 3(–3; –5; 2), А 4(–1; –4; 0).

19. А 1 (2; –1; 3), А 2(–5; 1; 1), А 3(0; 3; –4), А 4(–1; –3; 4).

20. А 1 (2; 1; –4), А 2(1; –2; 3), А 3(1; –2; –3), А 4(5; –2; 1).

21. Даны вершины треугольника: А (1; –1), В (–2; 1), С (3; 5). Составить уравнение перпендикуляра, опущенного из вершины А на медиану, проведенную из вершины В.

22. Даны вершины треугольника: А (2; 1), В (–1; –1), С (3; 2). Составить уравнения его высот.

23. Составить уравнения сторон и медиан треугольника с вершинами А (3; 2), В (5; –2), С (1; 0).

24. Даны вершины треугольника: А (1; 4), В (3; –9), С (–5; 2). Определить длину его медианы, проведенной из вершины В.

25. Даны три вершины А (2; 3), В (4; –1), С (0; 5) параллелограмма АВСD. Найти его четвертую вершину D, противоположную вершине В.

26. Даны вершины четырехугольника: А (–2; 14), В (4; –2), С (6; –2), D (6; 10). Определить точку пересечения его диагоналей АС и ВD.

27. Даны уравнения двух сторон параллелограмма 8 х + 3 у + 1 = 0, 2 х + у – 1 = 0 и уравнение одной из его диагоналей 3 х + 2 у + 3 = 0. Определить координаты вершины этого параллелограмма т.р. (–5, 13).

28. Найти точку Q, симметричную относительно прямой
2 х – 3 у – 3 = 0.

29. Даны уравнения двух сторон параллелограмма х – 2 у = 0,

ху – 1 = 0 и точка пересечения его диагоналей М (3; –1). Найти уравнения двух других сторон параллелограмма.

30. Даны уравнения двух сторон прямоугольника 5 х + 2 у –7= 0,

5 х + 2 у – 36 = 0 и уравнение его диагонали 3 х + 7 у – 10 = 0. Составить уравнения остальных сторон этого прямоугольника.

 

31 – 40. Привести уравнение кривой второго порядка к каноническому виду, построить график кривой.

31. x 2 + у 2 – 4 x + 2 у = 4; 32. x 2 у 2 – 4 у – 13 = 0;

33. x 2 – 4 x + 2 у + 2= 0; 34. x 2 + 4 x + 4 у 2 + 8у – 5 = 0;

35. x 2 – 6 у 2 – 12 x + 36 у – 54 = 0; 36. 2 x 2 + 4 x + 18 у 2 – 16= 0;

37. 2 x 2 + 2 у 2+ 4 x – 8 у – 8 = 0; 38. – x + у 2 + 2 у = 0;

39. 3 x 2 + 5 у 2 + 12 x – 10 у + 2 = 0; 40. 4 x 2 – 3 у 2 – 8 x – 6 у – 11 = 0.

 

41 – 50. Линия задана уравнением r = r (j) в полярной системе координат. Требуется: 1) построить линию по точкам начиная от j=0 до j=2p и придавая j значения через промежутки p/8; 2) по рисунку определить тип линии.

41. 42.
43. 44.
45. 46.
47. 48.
49. 50.
 







Дата добавления: 2015-10-15; просмотров: 455. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия