Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Задача двох тіл


Дата добавления: 2014-10-29; просмотров: 1780



Коли одна маса значно перевищує масу другого тіла, то рух другого тіла описується біля нерухомого масивного тіла – це задача одного тіла.

Коли маси обидві одного порядку, то виникає проблема урахування руху обох тіл – проблема двох тіл.

Розглянемо два тіла і (рис.84), що взаємодіють по закону всесвітнього тяжіння

Тут маємо притягуючий центр . Як видно з рисунка

.

Будемо розв’язувати задачу в системі центра мас ( -системі), помістивши початок координат в центр мас системи. В цьому випадку

.

Відносна відстань в -системі та ж сама, що і в лабораторній системі

.

Тому з останніх двох рівнянь одержимо

, .

Застосуємо другий закон Ньютона для кожної із частинок в -системі

, ;

, .

.

Останнє рівняння можна розглядати як рівняння руху деякої уявної частинки в центральному полі сил. Положення частинки відносно центра сил визначається радіусом-вектором . Згідно рівнянню уявній частинці слід приписати масу , яка визначається співвідношенням . Звідси . Величина називається зведеною масою частинки.

Таким чином, задача двох тіл зводиться до задачі про рух одної частинки із зведеною масою в центральному полі сил. З розв’язку рівняння

знаходимо радіус-вектор як функцію часу. А далі за формулами визначаємо і . Останні вектори відкладаються від центра мас системи. Тому, щоб скористатись формулами , радіус-вектор уявної частинки треба теж відкладати від центра мас системи.

Припустимо, в результаті розв’язку одержали траєкторію частинки , зображену на рис.85. Точка – центр мас системи. Далі будуємо і , які визначаються формулами . На рис.85 побудова здійснена для співвідношення мас .


<== предыдущая лекция | следующая лекция ==>
Рух частинки в полі . Задача Кеплера | Малі коливання
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | <== 15 ==> | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
Studopedia.info - Студопедия - 2014-2024 год . (0.186 сек.) російська версія | українська версія

Генерация страницы за: 0.186 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7