Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Гармонічні коливанняДата добавления: 2014-10-29; просмотров: 2240
Розглянемо коливання, які описуються рівнянням . Розв’язок шукатимемо у вигляді підстановки , де – стала величина. Після диференціювання , і підстановки в , отримаємо характеристичне рівняння , корні якого дорівнюють , . Згідно загальний розв’язок рівняння має вигляд . Функція, яка описує реальний фізичний процес, в даному випадку коливання, має бути дійсною. Використаємо умову дійсності комплексного числа для знаходження коефіцієнтів і . Рівність матиме місце за умовою рівних коефіцієнтів при однакових степеневих функціях, тобто , . Запишемо коефіцієнти і в показниковій формі , . Тут – модуль і – аргумент комплексного числа. Підстановкою цих виразів в , одержимо , а з врахуванням формули , маємо розв’язок рівняння . Тут і – сталі величини. Графік функції , яка визначає гармонічне коливання, представлений на рис.88. Зміщення змінюється з часом за законом косинуса. Величина найбільшого відхилення кульки від положення рівноваги називається амплітудою . Величина називається фазою коливання, а – початковою фазою. Оскільки косинус – періодична функція з періодом , назвемо періодом той інтервал часу, за який фаза коливання отримає приріст, рівний . Тоді період визначатиметься співвідношенням , звідки . Кількість коливань за одиницю часу називається частотою коливання . Очевидно, з періодом частота пов’язана співвідношенням . Тоді з маємо . Тут – циклічна частота, яка визначає кількість коливань за секунд. Кожне конкретне коливання характеризується своєю амплітудою і початковою фазою , величини яких визначаються початковими умовами, тобто значеннями відхилення і швидкості в початковий момент часу. Спочатку диференціюванням виразу отримаємо швидкість . Поклавши в рівняннях і , маємо два рівняння , , з яких дійсно можна отримати і : , . Складання гармонічних коливань одного напрямку Тобто складання гармонічних функцій, часто спрощується за рахунок застосування графічного способу складання векторів на площині. В цьому способі коливання представляють у вигляді вектора , який обертається навколо точки , що належить осі , з кутовою швидкістю (рис.89). Якщо напрям вектора утворює з віссю кут в початковий момент часу , то проекція вектора на вісь -ів буде змінюватись з часом за законом гармонічних коливань . Розглянемо складання двох гармонічних коливань одного напрямку і частоти Представимо обидва коливання за допомогою векторів і (рис.90). За правилом складання векторів побудуємо результуючий вектор . Легко бачити, що результуючий рух буде гармонічним коливанням з частотою , амплітудою і початковою фазою , тобто . Амплітуда і початкова фаза визначаються із трикутника на рис.90 . Такий спосіб складання коливань шляхом складання векторів застосовується, наприклад, в оптиці. Світлові коливання в деякій точці простору визначаються як результат накладання коливань, які приходять в цю точку від різних ділянок хвильового фронту. Проаналізуємо вираз для амплітуди. Якщо різниця фаз обох коливань , то амплітуда результуючого коливання дорівнює сумі амплітуд , а якщо різниця фаз , тобто коли обидва коливання відбуваються в протифазі, то амплітуда результуючого коливання дорівнює . При складанні коливань різних частот результуючий рух буде не гармонічним коливанням, а складним коливальним процесом. Биття Цікавим виявляється випадок складання двох гармонічних коливань однакового напрямку, коли частоти їх слабо відрізняються. Покажемо, що результуюче коливання за таких умов уявляє собою гармонічне коливання з пульсуючою амплітудою. Таке коливання називається биттям. Нехай частота одного коливання , а другого . Для спрощення задачі будемо вважати, що амплітуди обох коливань однакові, а початкові фази рівні нулю. Маємо Результатом додавання цих функцій є вираз .
В аргументі другого множника знехтували членом порівняно з . Множник в квадратних дужках повільно змінюється з часом . Отже, можна вважати, що рівняння описує гармонічне коливання з частотою , амплітуда якого повільно змінюється. Графік функції для співвідношення приведений на рис.91. Період зміни амплітуди, як бачимо, вдвічі менший ніж період функції, що стоїть в квадратних дужках виразу . Тобто амплітудою треба вважати модуль цієї функції .
|