Головна сторінка Випадкова сторінка КАТЕГОРІЇ: АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія |
Малі коливанняДата добавления: 2014-10-29; просмотров: 803
Розглянемо систему з одною ступінню вільності (наприклад, кулька підвішена на пружині, рис.86). Потенціальна енергія системи . Домовимося відраховувати потенціальну енергію від положення рівноваги системи, тобто . В стані стійкої рівноваги має мінімум, а тому при . Розкладемо в ряд Маклорена. Знехтувавши членами більш високого порядку малості ніж , маємо . Скориставшись співвідношенням (6.15) одержимо вираз для сили , який тотожній до виразу пружньої сили деформованої пружини, – коефіцієнт пружності. В положенні рівноваги сила тяжіння зрівноважена пружньою силою: . На відхилену на відстань від положення рівноваги кулю діє та ж сила тяжіння і пружня сила . Рух кульки описується рівнянням другого закону Ньютона . Позначивши , отримаємо рівняння гармонічних коливань . Якщо врахувати сили опору середовища, вважаючи, як це часто має місце, що вони пропорційні величині швидкості , тоді рівняння другого закону Ньютона має вигляд тут – коефіцієнт опору. Позначивши , де – коефіцієнт затухання, отримаємо рівняння затухаючих коливань . Припустимо далі, що кулька знаходиться під впливом зовнішньої сили, що змінюється по гармонічному закону . Тоді рівняння другого закону Ньютона матиме вигляд . Позначивши , одержимо рівняння, яке описує вимушені коливання . Рівняння такого типу є лінійними диференційними рівняннями із сталими коефіцієнтами. Розв’язок- полегшується, якщо перейти до комплексних чисел. Тому згадаємо спочатку деякі властивості комплексних величин. Комплексним числом називається число вигляду , де – дійсна частина комплексного числа, а – уявна частина ; – уявна одиниця . Число називається комплексно спряженим числу . Комплексному числу можна спів ставити точку на площині (рис.87), з координатними осями і . Але те ж саме число можна задати полярними координатами і . Використовуючи зв’язок між обома парами координат , , , , можна представити комплексне число у вигляді , або, скориставшись формулою Ейлера , отримаємо . Це так звана показникова форма комплексного числа. і – модуль і аргумент комплексного числа. Замінивши в формулі Ейлера на прийдемо до співвідношення , яке дозволяє комплексно спряжене число в показниковій формі записати у вигляді . Склавши вирази і отримаємо . Очевидно, що . Із виразів і випливає, що при умові , уявна частина комплексного числа дорівнює нулю. Це і є умова того, що комплексне число буде дійсним. Як відомо з теорії, розв’язок диференціального рівняння другого порядку з сталими коефіцієнтами складається із суми загального розв’язку однорідного рівняння (тут і – лінійно незалежні розв’язки однорідного рівняння, і – довільні сталі) і окремого розв’язку неоднорідного рівняння . Якщо припустити, що права частина рівняння комплексна і дорівнює , то і розв’язок цього рівняння буде комплексним числом , тобто задовольнятиме рівнянню . Підставивши в останнє рівняння і прирівнявши окремо дійсні і уявні частини в , отримаємо два незалежних рівняння , . Перше із цих рівнянь співпадає саме з рівнянням , розв’язок якого ми розшукуємо. Така властивість рівняння дозволяє в розв’язуванні застосувати наступний прийом. В рівнянні до правої частини, яка є дійсним числом , треба додати довільну уявну функцію. Із знайденого потім комплексного розв’язку треба виділити його дійсну частину, яка саме і буде розв’язком рівняння .
|