Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

С m неизвестными





 

Система m линейных уравнений с m неизвестными имеет вид:

.

Определитель, составленный из коэффициентов при неизвестных

,

называется главным определителем системы.

Если Δ ≠ 0, то система имеет единственное решение, которое может быть найдено по правилу Крамера:

, где i=1, 2, …, m.

Определители Δ xi получаются из главного определителя системы путем замещения элементов i-го столбца столбцом свободных членов.

Пример. Решить систему уравнений

. (1)

 

Другим способом решения систем линейных уравнений является метод Гаусса или метод исключения, который состоит из двух этапов. На первом этапе путем линейных преобразований уравнений системы заданная система приводится к ступенчатому, в частности, треугольному виду; на втором этапе определяются значения неизвестных. В качестве примера решим систему (1) методом Гаусса.

Разделим все члены первого уравнения системы (1) на коэффициент а 11=2. Получим систему

. (2)

Умножим все члены первого уравнения на 3 и вычтем их из второго уравнения, затем из третьего уравнения вычтем первое, само первое уравнение системы (2) оставим без изменения. Тогда будем иметь

. (3)

Разделим все члены второго уравнения на 0, 5:

. (4)

Умножим второе уравнение на -0, 5 и вычтем его из третьего, при этом первое и второе уравнения системы (4) оставим без изменения

. (5)

На этом завершен так называемый прямой ход метода Гаусса. Неизвестные находятся в обратной последовательности. Из последнего уравнения находим х 3=3, из второго следует х 2, из первого х 1=0, 5-0, 5∙ 2+0, 5∙ 3=1.

Замечания. Следует иметь в виду, что если главный определитель системы Δ ≠ 0, то система имеет единственное решение. Если Δ =0, но хотя бы один из определителей Δ х i ≠ 0, то система не имеет решений. Если Δ =0 и все определители Δ х i =0, то система имеет бесчисленное множество решений.

______________

 

1.2.1. Решить системы уравнений по правилу Крамера:

а) ; б) ; в) .

Ответ: а) (0; 2); б) (5; 6; 10); в) (-1; 0; 1).

 

1.2.2. Решить систему уравнений двумя способами: по правилу Крамера и методом Гаусса.

.

Ответ: (2; -1; -3).

 

1.2.3. Решить системы уравнений методом Гаусса

а) ; б) ;

в) .

Ответ: а) решений нет; б) решений бесконечное множество;

в) (1; -1; 2; 3).

____________

 

1.2.4. Решить системы уравнений по правилу Крамера

а) ; б) .

Ответ: а) (5; -4); б) (2; -5; 3).

 

1.2.5. Решить систему уравнений двумя способами

.

Ответ: (2; 1; 3).

 

1.2.6. Решить систему методом Гаусса

.

Ответ: (3; -4; -1; 1).

 







Дата добавления: 2014-10-22; просмотров: 736. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия