Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

С m неизвестными





 

Система m линейных уравнений с m неизвестными имеет вид:

.

Определитель, составленный из коэффициентов при неизвестных

,

называется главным определителем системы.

Если Δ ≠ 0, то система имеет единственное решение, которое может быть найдено по правилу Крамера:

, где i=1, 2, …, m.

Определители Δ xi получаются из главного определителя системы путем замещения элементов i-го столбца столбцом свободных членов.

Пример. Решить систему уравнений

. (1)

 

Другим способом решения систем линейных уравнений является метод Гаусса или метод исключения, который состоит из двух этапов. На первом этапе путем линейных преобразований уравнений системы заданная система приводится к ступенчатому, в частности, треугольному виду; на втором этапе определяются значения неизвестных. В качестве примера решим систему (1) методом Гаусса.

Разделим все члены первого уравнения системы (1) на коэффициент а 11=2. Получим систему

. (2)

Умножим все члены первого уравнения на 3 и вычтем их из второго уравнения, затем из третьего уравнения вычтем первое, само первое уравнение системы (2) оставим без изменения. Тогда будем иметь

. (3)

Разделим все члены второго уравнения на 0, 5:

. (4)

Умножим второе уравнение на -0, 5 и вычтем его из третьего, при этом первое и второе уравнения системы (4) оставим без изменения

. (5)

На этом завершен так называемый прямой ход метода Гаусса. Неизвестные находятся в обратной последовательности. Из последнего уравнения находим х 3=3, из второго следует х 2, из первого х 1=0, 5-0, 5∙ 2+0, 5∙ 3=1.

Замечания. Следует иметь в виду, что если главный определитель системы Δ ≠ 0, то система имеет единственное решение. Если Δ =0, но хотя бы один из определителей Δ х i ≠ 0, то система не имеет решений. Если Δ =0 и все определители Δ х i =0, то система имеет бесчисленное множество решений.

______________

 

1.2.1. Решить системы уравнений по правилу Крамера:

а) ; б) ; в) .

Ответ: а) (0; 2); б) (5; 6; 10); в) (-1; 0; 1).

 

1.2.2. Решить систему уравнений двумя способами: по правилу Крамера и методом Гаусса.

.

Ответ: (2; -1; -3).

 

1.2.3. Решить системы уравнений методом Гаусса

а) ; б) ;

в) .

Ответ: а) решений нет; б) решений бесконечное множество;

в) (1; -1; 2; 3).

____________

 

1.2.4. Решить системы уравнений по правилу Крамера

а) ; б) .

Ответ: а) (5; -4); б) (2; -5; 3).

 

1.2.5. Решить систему уравнений двумя способами

.

Ответ: (2; 1; 3).

 

1.2.6. Решить систему методом Гаусса

.

Ответ: (3; -4; -1; 1).

 







Дата добавления: 2014-10-22; просмотров: 736. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия