Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матричные уравнения и системы линейных уравнений





 

Обратной матрицей к квадратной матрице А называется такая матрица (обозначается А -1), что А -1 А=А А -1= Е.

Замечание. Если матрица А -1 существует, то она единственна.

Минором Мij к элементу аij квадратной матрицы А называется определитель, вычисленный из элементов матрицы А, оставшихся после вычеркивания i -й строки и j -го столбца.

Алгебраическим дополнением Аij к элементу аij квадратной матрицы А=(aij) называется произведение Аij= (-1) i+jMij.

Присоединенной матрицей к квадратной матрице А=(aij) называется матрица , составленная из алгебраических дополнений Аij к элементам aij матрицы А.

Теорема. Если квадратная матрица А – невырожденная (т.е. det A ¹ 0), то

. (*)

Метод присоединенной матрицы вычисления обратной матрицы к невырожденной матрице А состоит в применении формулы (*).

Матричные уравнения простейшего вида с неизвестной матрицей Х записываются следующим образом:

АХ=В, ХА=В, АХС=В.

В этих уравнениях А, В, С, Х – матрицы таких размеров, что все используемые операции умножения возможны, и с обеих сторон от знака равенства стоят матрицы одинаковых размеров.

Если в этих уравнениях матрицы А и С невырожденные, то их решения записываются следующим образом:

а) для уравнения АХ=В Þ Х=А -1 В;

б) для уравнения ХА=В Þ Х=ВА -1;

в) для уравнения АХС=В Þ Х=А -1 ВС -1.

 







Дата добавления: 2014-10-22; просмотров: 760. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия