Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матричные уравнения и системы линейных уравнений





 

Обратной матрицей к квадратной матрице А называется такая матрица (обозначается А -1), что А -1 А=А А -1= Е.

Замечание. Если матрица А -1 существует, то она единственна.

Минором Мij к элементу аij квадратной матрицы А называется определитель, вычисленный из элементов матрицы А, оставшихся после вычеркивания i -й строки и j -го столбца.

Алгебраическим дополнением Аij к элементу аij квадратной матрицы А=(aij) называется произведение Аij= (-1) i+jMij.

Присоединенной матрицей к квадратной матрице А=(aij) называется матрица , составленная из алгебраических дополнений Аij к элементам aij матрицы А.

Теорема. Если квадратная матрица А – невырожденная (т.е. det A ¹ 0), то

. (*)

Метод присоединенной матрицы вычисления обратной матрицы к невырожденной матрице А состоит в применении формулы (*).

Матричные уравнения простейшего вида с неизвестной матрицей Х записываются следующим образом:

АХ=В, ХА=В, АХС=В.

В этих уравнениях А, В, С, Х – матрицы таких размеров, что все используемые операции умножения возможны, и с обеих сторон от знака равенства стоят матрицы одинаковых размеров.

Если в этих уравнениях матрицы А и С невырожденные, то их решения записываются следующим образом:

а) для уравнения АХ=В Þ Х=А -1 В;

б) для уравнения ХА=В Þ Х=ВА -1;

в) для уравнения АХС=В Þ Х=А -1 ВС -1.

 







Дата добавления: 2014-10-22; просмотров: 760. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия